cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 93 results. Next

A029931 If 2n = Sum 2^e_i, a(n) = Sum e_i.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
Offset: 0

Views

Author

Keywords

Comments

Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024

Examples

			14 = 8+4+2 so a(7) = 3+2+1 = 6.
Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7.
The triangle starts:
  0
  1
  2 3
  3 4 5 6
The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - _Gus Wiseman_, Jul 22 2019
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Cf. A001793 (row sums), A011782 (row lengths), A059867, A066099, A124757.
Row sums of A048793 and A272020.
Contains exactly A000009(n) copies of n.
For length instead of sum we have A000120, complement A023416.
For minimum instead of sum we have A001511, opposite A000012.
For maximum instead of sum we have A029837 or A070939, opposite A070940.
For product instead of sum we have A096111.
The reverse version is A230877, row sums of A371572.
The reverse complement is A359359, row sums of A371571.
The complement is A359400, row sums of A368494.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, inverse A048675.
A372471 lists binary indices of primes, row-sums A372429.

Programs

  • Haskell
    a029931 = sum . zipWith (*) [1..] . a030308_row
    -- Reinhard Zumkeller, Feb 28 2014
    
  • Maple
    HammingWeight := n -> add(i, i = convert(n, base, 2)):
    a := proc(n) option remember; `if`(n = 0, 0,
    ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end:
    seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
  • Mathematica
    a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a,78,0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
  • PARI
    for(n=0,100,l=length(binary(n)); print1(sum(i=1,l, component(binary(n),i)*(l-i+1)),","))
    
  • PARI
    a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
    
  • Python
    def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1],1)) # Chai Wah Wu, Dec 20 2022
    (C#)
    ulong A029931(ulong n) {
        ulong result = 0, counter = 1;
        while(n > 0) {
            if (n % 2 == 1)
              result += counter;
            counter++;
            n /= 2;
        }
        return result;
    } // Frank Hollstein, Jan 07 2023

Formula

a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000027(k+1). - Philippe Deléham, Oct 15 2011
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
a(A089633(n)) = n and a(m) != n for m < A089633(n).
a(n) = Sum_{k=1..A070939(n)} k*A030308(n,k-1). (End)
a(n) = A073642(n) + A000120(n). - Peter Kagey, Apr 04 2016

Extensions

More terms from Erich Friedman

A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024

Examples

			From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
   30: {1,2,3}
   40: {1,1,1,3}
   54: {1,2,2,2}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
(End)
		

Crossrefs

Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
    A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
    # simpler alternative
    f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Oct 10 2016
  • Mathematica
    a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
    
  • PARI
    \\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
    v048675sigs = readvec("a048675.txt");
    A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n==1: return 0
        f=factorint(n)
        return sum([f[i]*2**(primepi(i) - 1) for i in f])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017

Formula

a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
a(n) = A087207(A097248(n)). - Flávio V. Fernandes, Jul 16 2025

Extensions

Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017

A272020 Irregular triangle read by rows: strictly decreasing sequences of positive numbers given in lexicographic order.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 3, 2, 3, 2, 1, 4, 4, 1, 4, 2, 4, 2, 1, 4, 3, 4, 3, 1, 4, 3, 2, 4, 3, 2, 1, 5, 5, 1, 5, 2, 5, 2, 1, 5, 3, 5, 3, 1, 5, 3, 2, 5, 3, 2, 1, 5, 4, 5, 4, 1, 5, 4, 2, 5, 4, 2, 1, 5, 4, 3, 5, 4, 3, 1, 5, 4, 3, 2, 5, 4, 3, 2, 1, 6, 6, 1, 6, 2, 6, 2, 1
Offset: 0

Views

Author

Peter Kagey, Apr 17 2016

Keywords

Comments

Length of n-th row given by A000120(n);
Min of n-th row given by A001511(n);
Sum of n-th row given by A029931(n);
Product of n-th row given by A096111(n);
Max of n-th row given by A113473(n);
Numerator of sum of reciprocals of n-th row given by A116416(n);
Denominator of sum of reciprocals of n-th row given by A116417(n);
LCM of n-th row given by A271410(n).
The first appearance of n is at A001787(n - 1).
n-th row begins at index A000788(n - 1) for n > 0.
Also the reversed positions of 1's in the reversed binary expansion of n. Also the reversed partial sums of the n-th composition in standard order (row n of A066099). Reversing rows gives A048793. - Gus Wiseman, Jan 17 2023

Examples

			Row n is given by the exponents in the binary expansion of 2*n. For example, row 5 = [3, 1] because 2*5 = 2^3 + 2^1.
Row 0: []
Row 1: [1]
Row 2: [2]
Row 3: [2, 1]
Row 4: [3]
Row 5: [3, 1]
Row 6: [3, 2]
Row 7: [3, 2, 1]
		

Crossrefs

Cf. A048793 gives the rows in reverse order.
Cf. A272011.
Lasts are A001511.
Heinz numbers of the rows are A019565.
Firsts are A029837 or A070939 or A113473.
Row sums are A029931.
A066099 lists standard comps, partial sums A358134, weighted sum A359042.

Programs

  • Maple
    T:= proc(n) local i, l, m; l:= NULL; m:= n;
          if n=0 then return [][] fi; for i while m>0 do
          if irem(m, 2, 'm')=1 then l:=i, l fi od; l
        end:
    seq(T(n), n=0..35);  # Alois P. Heinz, Nov 27 2024
  • Mathematica
    Table[Reverse[Join@@Position[Reverse[IntegerDigits[n,2]],1]],{n,0,100}] (* Gus Wiseman, Jan 17 2023 *)

A367905 Number of ways to choose a sequence of different binary indices, one of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 4, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			352 has binary indices of binary indices {{2,3},{1,2,3},{1,4}}, and there are six possible choices (2,1,4), (2,3,1), (2,3,4), (3,1,4), (3,2,1), (3,2,4), so a(352) = 6.
		

Crossrefs

A version for multisets is A367771, see A355529, A355740, A355744, A355745.
Positions of positive terms are A367906.
Positions of zeros are A367907.
Positions of ones are A367908.
Positions of terms > 1 are A367909.
Positions of first appearances are A367910, sorted A367911.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]],{n,0,100}]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(0):
            c = 0
            for j in list(product(*[bin_i(k) for k in bin_i(n)])):
                if len(set(j)) == len(j):
                    c += 1
            yield c
    A367905_list = list(islice(a_gen(), 90)) # John Tyler Rascoe, May 22 2024

A052330 Let S_k denote the first 2^k terms of this sequence and let b_k be the smallest positive integer that is not in S_k; then the numbers b_k*S_k are the next 2^k terms.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 7, 14, 21, 42, 28, 56, 84, 168, 35, 70, 105, 210, 140, 280, 420, 840, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 63, 126, 189, 378, 252, 504, 756, 1512, 315, 630, 945, 1890
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

Inverse of sequence A064358 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
This sequence is not exactly a permutation because it has offset 0 but doesn't contain 0. A052331 is its exact inverse, which has offset 1 and contains 0. See also A064358.
Are there any other values of n besides 4 and 36 with a(n) = n? - Thomas Ordowski, Apr 01 2005
4 = 100 = 4^1 * 3^0 * 2^0, 36 = 100100 = 9^1 * 7^0 * 5^0 * 4^1 * 3^0 * 2^0. - Thomas Ordowski, May 26 2005
Ordering of positive integers by increasing "Fermi-Dirac representation", which is a representation of the "Fermi-Dirac factorization", term implying that each prime power with a power of two as exponent may appear at most once in the "Fermi-Dirac factorization" of n. (Cf. comment in A050376; see also the OEIS Wiki page.) - Daniel Forgues, Feb 11 2011
The subsequence consisting of the squarefree terms is A019565. - Peter Munn, Mar 28 2018
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k). A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. Then a(n) is the number whose binary indices are the parts of the strict integer partition with FDH-number n. - Gus Wiseman, Aug 19 2019
The set of indices of odd-valued terms has asymptotic density 0. In this sense (using the order they appear in this permutation) 100% of numbers are even. - Peter Munn, Aug 26 2019

Examples

			Terms following 5 are 10, 15, 30, 20, 40, 60, 120; this is followed by 7 as 6 has already occurred. - _Philippe Deléham_, Jun 03 2015
From _Antti Karttunen_, Apr 13 2018, after also _Philippe Deléham_'s Jun 03 2015 example: (Start)
This sequence can be regarded also as an irregular triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., that is, it can be represented as a binary tree, where each left hand child contains A300841(k), and each right hand child contains 2*A300841(k), when their parent contains k:
                                     1
                                     |
                  ...................2...................
                 3                                       6
       4......../ \........8                  12......../ \........24
      / \                 / \                 / \                 / \
     /   \               /   \               /   \               /   \
    /     \             /     \             /     \             /     \
   5       10         15       30         20       40         60      120
  7 14   21  42     28  56   84  168    35  70  105  210   140 280  420 840
  etc.
Compare also to trees like A005940 and A283477, and sequences A207901 and A302783.
(End)
		

Crossrefs

Subsequences: A019565 (squarefree terms), A050376 (the left edge from 2 onward), A336882 (odd terms).

Programs

  • Mathematica
    a = {1}; Do[a = Join[a, a*Min[Complement[Range[Max[a] + 1], a]]], {n, 1, 6}]; a (* Ivan Neretin, May 09 2015 *)
  • PARI
    up_to_e = 13; \\ Good for computing up to n = (2^13)-1
    v050376 = vector(up_to_e);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A050376(n) = v050376[n];
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; \\ Antti Karttunen, Apr 12 2018

Formula

a(0)=1; a(n+2^k)=a(n)*b(k) for n < 2^k, k = 0, 1, ... where b is A050376. - Thomas Ordowski, Mar 04 2005
The binary representation of n, n = Sum_{i=0..1+floor(log_2(n))} n_i * 2^i, n_i in {0,1}, is taken as the "Fermi-Dirac representation" (A182979) of a(n), a(n) = Product_{i=0..1+floor(log_2(n))} (b_i)^(n_i) where b_i is A050376(i), i.e., the i-th "Fermi-Dirac prime" (prime power with exponent being a power of 2). - Daniel Forgues, Feb 12 2011
From Antti Karttunen, Apr 12 & 17 2018: (Start)
a(0) = 1; a(2n) = A300841(a(n)), a(2n+1) = 2*A300841(a(n)).
a(n) = A207901(A006068(n)) = A302783(A003188(n)) = A302781(A302845(n)).
(End)

Extensions

Entry revised Mar 17 2005 by N. J. A. Sloane, based on comments from several people, especially David Wasserman and Thomas Ordowski

A367907 Numbers n such that it is not possible to choose a different binary index of each binary index of n.

Original entry on oeis.org

7, 15, 23, 25, 27, 29, 30, 31, 39, 42, 43, 45, 46, 47, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 71, 75, 77, 78, 79, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 99, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) contradicting a strict version of the axiom of choice.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{1},{2},{1,2},{1,3}} with BII-number 23 has choices (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3), but none of these has all different elements, so 23 is in the sequence.
The terms together with the corresponding set-systems begin:
   7: {{1},{2},{1,2}}
  15: {{1},{2},{1,2},{3}}
  23: {{1},{2},{1,2},{1,3}}
  25: {{1},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  39: {{1},{2},{1,2},{2,3}}
  42: {{2},{3},{2,3}}
  43: {{1},{2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  46: {{2},{1,2},{3},{2,3}}
  47: {{1},{2},{1,2},{3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
		

Crossrefs

These set-systems are counted by A367903, non-isomorphic A368094.
Positions of zeros in A367905, firsts A367910, sorted A367911.
The complement is A367906.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]=={}&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            p = list(product(*[bin_i(k) for k in bin_i(n)]))
            x = len(p)
            for j in range(x):
                if len(set(p[j])) == len(p[j]): break
                if j+1 == x: yield(n)
    A367907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024

Formula

A367906 Numbers k such that it is possible to choose a different binary index of each binary index of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 49, 50, 52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 80, 81, 82, 84, 88, 96, 97, 98, 100, 104, 112, 128, 129, 130, 131, 132
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice.
A binary index of k (row k of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number k to be obtained by taking the binary indices of each binary index of k. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{2,3},{1,2,3},{1,4}} with BII-number 352 has choices such as (2,1,4) that satisfy the axiom, so 352 is in the sequence.
The terms together with the corresponding set-systems begin:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
		

Crossrefs

These set-systems are counted by A367902, non-isomorphic A368095.
Positions of positive terms in A367905, firsts A367910, sorted A367911.
The complement is A367907.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]!={}&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            for j in list(product(*[bin_i(k) for k in bin_i(n)])):
                if len(set(j)) == len(j):
                    yield(n); break
    A367906_list = list(islice(a_gen(),100)) # John Tyler Rascoe, Dec 23 2023

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A333227 Numbers k such that the k-th composition in standard order is pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 75, 77, 78, 79, 80, 83, 89, 92, 95, 96, 97, 99, 101, 102, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2020

Keywords

Comments

This is the definition used for CoprimeQ in Mathematica.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          27: (1,2,1,1)      55: (1,2,1,1,1)
   3: (1,1)        28: (1,1,3)        56: (1,1,4)
   5: (2,1)        29: (1,1,2,1)      57: (1,1,3,1)
   6: (1,2)        30: (1,1,1,2)      59: (1,1,2,1,1)
   7: (1,1,1)      31: (1,1,1,1,1)    60: (1,1,1,3)
   9: (3,1)        33: (5,1)          61: (1,1,1,2,1)
  11: (2,1,1)      35: (4,1,1)        62: (1,1,1,1,2)
  12: (1,3)        37: (3,2,1)        63: (1,1,1,1,1,1)
  13: (1,2,1)      38: (3,1,2)        65: (6,1)
  14: (1,1,2)      39: (3,1,1,1)      66: (5,2)
  15: (1,1,1,1)    41: (2,3,1)        67: (5,1,1)
  17: (4,1)        44: (2,1,3)        68: (4,3)
  18: (3,2)        47: (2,1,1,1,1)    71: (4,1,1,1)
  19: (3,1,1)      48: (1,5)          72: (3,4)
  20: (2,3)        49: (1,4,1)        75: (3,2,1,1)
  23: (2,1,1,1)    50: (1,3,2)        77: (3,1,2,1)
  24: (1,4)        51: (1,3,1,1)      78: (3,1,1,2)
  25: (1,3,1)      52: (1,2,3)        79: (3,1,1,1,1)
		

Crossrefs

A different ranking of the same compositions is A326675.
Ignoring repeated parts gives A333228.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of A066099.
- The sum of q(k) is A070939(k).
- The product of q(k) is A124758(k).
- q(k) has A124767(k) runs and A333381(k) anti-runs.
- The GCD of q(k) is A326674(k).
- The Heinz number of q(k) is A333219(k).
- The LCM of q(k) is A333226(k).
Coprime or singleton sets are ranked by A087087.
Strict compositions are ranked by A233564.
Constant compositions are ranked by A272919.
Relatively prime compositions appear to be ranked by A291166.
Normal compositions are ranked by A333217.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@stc[#]&]

A089633 Numbers having no more than one 0 in their binary representation.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 11, 13, 14, 15, 23, 27, 29, 30, 31, 47, 55, 59, 61, 62, 63, 95, 111, 119, 123, 125, 126, 127, 191, 223, 239, 247, 251, 253, 254, 255, 383, 447, 479, 495, 503, 507, 509, 510, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1023
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 01 2004

Keywords

Comments

Complement of A158582. - Reinhard Zumkeller, Apr 16 2009
Also union of A168604 and A030130. - Douglas Latimer, Jul 19 2012
Numbers of the form 2^t - 2^k - 1, 0 <= k < t.
n is in the sequence if and only if 2*n+1 is in the sequence. - Robert Israel, Dec 14 2018
Also the least binary rank of a strict integer partition of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). - Gus Wiseman, May 24 2024

Examples

			From _Tilman Piesk_, May 09 2012: (Start)
This may also be viewed as a triangle:             In binary:
                  0                                         0
               1     2                                 01       10
             3    5    6                          011      101      110
           7   11   13   14                  0111     1011     1101     1110
        15   23   27   29   30          01111    10111    11011    11101    11110
      31  47   55   59   61   62
   63   95  111  119  123  125  126
Left three diagonals are A000225,  A055010, A086224. Right diagonal is A000918. Central column is A129868. Numbers in row n (counted from 0) have n binary 1s. (End)
From _Gus Wiseman_, May 24 2024: (Start)
The terms together with their binary expansions and binary indices begin:
   0:      0 ~ {}
   1:      1 ~ {1}
   2:     10 ~ {2}
   3:     11 ~ {1,2}
   5:    101 ~ {1,3}
   6:    110 ~ {2,3}
   7:    111 ~ {1,2,3}
  11:   1011 ~ {1,2,4}
  13:   1101 ~ {1,3,4}
  14:   1110 ~ {2,3,4}
  15:   1111 ~ {1,2,3,4}
  23:  10111 ~ {1,2,3,5}
  27:  11011 ~ {1,2,4,5}
  29:  11101 ~ {1,3,4,5}
  30:  11110 ~ {2,3,4,5}
  31:  11111 ~ {1,2,3,4,5}
  47: 101111 ~ {1,2,3,4,6}
  55: 110111 ~ {1,2,3,5,6}
  59: 111011 ~ {1,2,4,5,6}
  61: 111101 ~ {1,3,4,5,6}
  62: 111110 ~ {2,3,4,5,6}
(End)
		

Crossrefs

Cf. A181741 (primes), union of A081118 and A000918, apart from initial -1.
For least binary index (instead of rank) we have A001511.
Applying A019565 (Heinz number of binary indices) gives A077011.
For greatest binary index we have A029837 or A070939, opposite A070940.
Row minima of A118462 (binary ranks of strict partitions).
For sum instead of minimum we have A372888, non-strict A372890.
A000009 counts strict partitions, ranks A005117.
A048675 gives binary rank of prime indices, distinct A087207.
A048793 lists binary indices, product A096111, reverse A272020.
A277905 groups all positive integers by binary rank of prime indices.

Programs

  • Haskell
    a089633 n = a089633_list !! (n-1)
    a089633_list = [2 ^ t - 2 ^ k - 1 | t <- [1..], k <- [t-1,t-2..0]]
    -- Reinhard Zumkeller, Feb 23 2012
    
  • Maple
    seq(seq(2^a-1-2^b,b=a-1..0,-1),a=1..11); # Robert Israel, Dec 14 2018
  • Mathematica
    fQ[n_] := DigitCount[n, 2, 0] < 2; Select[ Range[0, 2^10], fQ] (* Robert G. Wilson v, Aug 02 2012 *)
  • PARI
    {insq(n) = local(dd, hf, v); v=binary(n);hf=length(v);dd=sum(i=1,hf,v[i]);if(dd<=hf-2,-1,1)}
    {for(w=0,1536,if(insq(w)>=0,print1(w,", ")))}
    \\ Douglas Latimer, May 07 2013
    
  • PARI
    isoka(n) = #select(x->(x==0), binary(n)) <= 1; \\ Michel Marcus, Dec 14 2018
    
  • Python
    from itertools import count, islice
    def A089633_gen(): # generator of terms
        return ((1<A089633_list = list(islice(A089633_gen(),30)) # Chai Wah Wu, Feb 10 2023
    
  • Python
    from math import isqrt, comb
    def A089633(n): return (1<<(a:=(isqrt((n<<3)+1)-1>>1)+1))-(1<Chai Wah Wu, Dec 19 2024

Formula

A023416(a(n)) <= 1; A023416(a(n)) = A023532(n-2) for n>1;
A000120(a(u)) <= A000120(a(v)) for uA000120(a(n)) = A003056(n).
a(0)=0, n>0: a(n+1) = Min{m>n: BinOnes(a(n))<=BinOnes(m)} with BinOnes=A000120.
If m = floor((sqrt(8*n+1) - 1) / 2), then a(n) = 2^(m+1) - 2^(m*(m+3)/2 - n) - 1. - Carl R. White, Feb 10 2009
A029931(a(n)) = n and A029931(m) != n for m < a(n). - Reinhard Zumkeller, Feb 28 2014
A265705(a(n),k) = A265705(a(n),a(n)-k), k = 0 .. a(n). - Reinhard Zumkeller, Dec 15 2015
a(A014132(n)-1) = 2*a(n-1)+1 for n >= 1. - Robert Israel, Dec 14 2018
Sum_{n>=1} 1/a(n) = A065442 + A160502 = 3.069285887459... . - Amiram Eldar, Jan 09 2024
A019565(a(n)) = A077011(n). - Gus Wiseman, May 24 2024
Showing 1-10 of 93 results. Next