cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A121381 a(n) = ceiling(n*Pi).

Original entry on oeis.org

0, 4, 7, 10, 13, 16, 19, 22, 26, 29, 32, 35, 38, 41, 44, 48, 51, 54, 57, 60, 63, 66, 70, 73, 76, 79, 82, 85, 88, 92, 95, 98, 101, 104, 107, 110, 114, 117, 120, 123, 126, 129, 132, 136, 139, 142, 145, 148, 151, 154, 158, 161, 164, 167, 170, 173, 176, 180, 183, 186
Offset: 0

Views

Author

Mohammad K. Azarian, Sep 06 2006

Keywords

Crossrefs

Essentially the same as A004084. Cf. A022844, A121854, A121855.

Programs

  • Magma
    [Ceiling(n*Pi): n in [0..50]]; // G. C. Greubel, Oct 28 2017
  • Mathematica
    Table[Ceiling[n Pi], {n, 0, 80}] (* Vincenzo Librandi, Feb 22 2013 *)
  • PARI
    for(n=0,50, print1(ceil(n*Pi), ", ")) \\ G. C. Greubel, Oct 28 2017
    

A121905 a(n) = ceiling(e^(n*Pi)).

Original entry on oeis.org

1, 24, 536, 12392, 286752, 6635624, 153552936, 3553321281, 82226315586, 1902773895293, 44031505860633, 1018919543279305, 23578503968558227, 545622913077172101, 12626092124920479898, 292176517015939695008
Offset: 0

Views

Author

Mohammad K. Azarian, Sep 01 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Ceiling(Exp(Pi(C)*n)): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    Ceiling[E^(Pi Range[0, 20])] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil(exp(Pi*n)), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset changed to 0 by Georg Fischer, Sep 02 2022

A121915 a(n) = floor((Pi+e)^(n*Pi)).

Original entry on oeis.org

1, 258, 66801, 17265408, 4462406595, 1153350806021, 298094324981778, 77045272021641916, 19913072619720776032, 5146720243221262934093, 1330218081751512472685763, 343807329988307215923432746, 88860226586342124489251555256, 22966758356328845813340839281381
Offset: 0

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Programs

  • Magma
    C := ComplexField(); [Floor((Pi(C)+Exp(1))^(n*Pi(C))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    With[{c=\[Pi]+E}, Floor[c^(\[Pi] Range[0, 20])]]  (* Harvey P. Dale, Mar 20 2011 *)
  • PARI
    for(n=0,50, print1(floor((Pi+exp(1))^(n*Pi)), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset changed to 0 by Georg Fischer, Sep 02 2022

A331859 The total number of elastic collisions between a block of mass n, a block of mass 1, and a wall.

Original entry on oeis.org

3, 5, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25
Offset: 1

Author

Peter Kagey, Jan 29 2020

Keywords

Comments

Suppose there is a block A of mass n sliding left toward a stationary block B of mass 1, to the left of which is a wall. Assuming the sliding is frictionless and the collisions are elastic, a(n) is the number of collisions between A and B plus the number of collisions between B and the wall. (See Grant Sanderson links for animated examples.)
a(100^n) = A011545(n).
Since arctan(sqrt(1/n)) is approximately sqrt(1/n) for large values of n, a(n) = A121854(n) for most values of n.
Conjecture: The values of n for which a(n) != A121854(n) is a subset of A331903.
Initial phase:
\ \| | |
\ | | |
\ \| | |
\ | | |
\ \| <=== | Block A |
\ | _______ | |
\ \| | | | M = n |
\ | | Block B | | |
\ \| | | | | |
\ | | M = 1 | | |
\ L----------------------------------------------------------
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \|
\ \| | |
\ | | |
\ \| | |
\ | | |
\ \| <=== | |
\ | _______ | |
\ \| | || |
\ | | || |
\ \| | || |
\ | | || |
\ L----------------------------------------------------------
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \|
\ \| | |
\ | | |
\ \| | |
\ | | |
\ \| <== | |
\ | _______ | |
\ \| | | | |
\ | | | | |
\ \|<===>| | | |
\ | | | | |
\ L----------------------------------------------------------
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[Pi/ArcTan[Sqrt[1/n]] - 1], {n, 1, 100}]

Formula

a(n) = ceiling(Pi/arctan(sqrt(1/n))) - 1.

A121900 a(n) = ceiling((Pi - e)*sqrt(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Author

Mohammad K. Azarian, Sep 01 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Ceiling((Pi(C) - Exp(1))*Sqrt(n)): n in [0..50]]; // G. C. Greubel, Oct 28 2017
  • Mathematica
    Table[Ceiling[(Pi - E) Sqrt[n]], {n, 0, 110}] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil((Pi - exp(1))*sqrt(n)), ", ")) \\ G. C. Greubel, Oct 28 2017
    

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
Offset changed to 0 by Georg Fischer, Sep 02 2022

A121904 a(n) = floor(Pi^(n*e)).

Original entry on oeis.org

1, 22, 504, 11328, 254433, 5714356, 128339632, 2882400037, 64736277048, 1453922256329, 32653869265129, 733378399940296, 16471061151498380, 369926160190271626, 8308229975861003525, 186595847388277259847, 4190785566084546949287, 94121513992523815815369
Offset: 0

Author

Mohammad K. Azarian, Sep 01 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Floor(Pi(C)^(n*Exp(1))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    Floor[Pi^(E Range[0, 20])] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(floor(Pi^(n*exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset changed to 0 by Georg Fischer, Sep 02 2022

A121917 a(n) = ceiling((Pi+e)^(n*e)).

Original entry on oeis.org

1, 123, 14952, 1828145, 223535960, 27332807666, 3342112728282, 408656059975458, 49968325108097956, 6109865382293662598, 747082374864324679925, 91349324397617876090444, 11169717488538903806777418, 1365774619533204572560235118
Offset: 0

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Programs

  • Magma
    C := ComplexField(); [Ceiling((Pi(C)+Exp(1))^(n*Exp(1))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    Ceiling[(Pi + E)^(E (Range[0, 20]))] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil((Pi+exp(1))^(n*exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset changed to 0 by Georg Fischer, Sep 02 2022

A121929 a(n) = ceiling(n*(e^Pi + Pi^e)).

Original entry on oeis.org

0, 46, 92, 137, 183, 228, 274, 320, 365, 411, 456, 502, 548, 593, 639, 684, 730, 776, 821, 867, 912, 958, 1004, 1049, 1095, 1140, 1186, 1232, 1277, 1323, 1368, 1414, 1460, 1505, 1551, 1596, 1642, 1688, 1733, 1779, 1824, 1870, 1916, 1961, 2007, 2052, 2098
Offset: 0

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Programs

  • Magma
    C := ComplexField(); [Ceiling(n*(Pi(C)^Exp(1) + Exp(1)^Pi(C))): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Maple
    A121929:=n->ceil((n-1)*(exp(1)^Pi+Pi^exp(1))): seq(A121929(n), n=1..100); # Wesley Ivan Hurt, Jan 21 2017
  • Mathematica
    With[{a = E^Pi + Pi^E}, Ceiling[a Range[0, 80]]] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil(n*(Pi^exp(1)+exp(Pi))), ", ")) \\ G. C. Greubel, Nov 06 2017
    

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
Offset changed to 0 by Georg Fischer, Sep 02 2022

A121930 a(n) = floor(n*(e^Pi - Pi^e)).

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 44, 44, 45, 46, 47, 47, 48, 49, 49
Offset: 0

Author

Mohammad K. Azarian, Sep 02 2006

Keywords

Comments

Beatty sequence of A063504. - R. J. Mathar, Aug 11 2012

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Floor(n*(Exp(1)^Pi(C) - Pi(C)^Exp(1) )): n in [0..50]]; // G. C. Greubel, Nov 06 2017
  • Mathematica
    With[{c=E^Pi-Pi^E},Floor[c*Range[0,80]]] (* Harvey P. Dale, Jan 06 2012 *)
  • PARI
    for(n=0,50, print1(floor(n*(exp(Pi) - Pi^exp(1))), ", ")) \\ G. C. Greubel, Nov 06 2017
    

A121899 a(n) = ceiling((Pi + e)*sqrt(n)).

Original entry on oeis.org

0, 6, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 42, 43, 43, 44, 44, 44, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49
Offset: 0

Author

Mohammad K. Azarian, Sep 01 2006

Keywords

Crossrefs

Programs

  • Magma
    C := ComplexField(); [Ceiling((Exp(1) + Pi(C))*Sqrt(n)): n in [0..50]]; // G. C. Greubel, Oct 28 2017
  • Mathematica
    Table[Ceiling[(Pi + E) Sqrt[n]], {n, 0, 70}] (* Vincenzo Librandi, Feb 21 2013 *)
  • PARI
    for(n=0,50, print1(ceil((exp(1)+Pi)*sqrt(n)), ", ")) \\ G. C. Greubel, Oct 28 2017
    

Extensions

Offset corrected by Mohammad K. Azarian, Nov 20 2008
Offset changed to 0 by Georg Fischer, Sep 02 2022
Showing 1-10 of 18 results. Next