A122552 a(0)=a(1)=a(2)=1, a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.
1, 1, 1, 4, 7, 13, 28, 55, 109, 220, 439, 877, 1756, 3511, 7021, 14044, 28087, 56173, 112348, 224695, 449389, 898780, 1797559, 3595117, 7190236, 14380471, 28760941, 57521884, 115043767, 230087533, 460175068, 920350135, 1840700269, 3681400540
Offset: 0
Examples
It is shown in A294627 that there are 42 quaternary sequences (i.e., build from four digits 0, 1, 2, 3) and having both 0 and 3 in every (consecutive) triple. Only a(5=4+1) = 13 of them start with 0: 003x, 030x, 03y0, 0y30, 0330, where x = 0, 1, 2, 3 and y = 1, 2.
Links
- Wojciech Florek, Table of n, a(n) for n = 0..2000
- Wojciech Florek, A class of generalized Tribonacci sequences applied to counting problems, Appl. Math. Comput., 338 (2018), 809-821.
- Index entries for linear recurrences with constant coefficients, signature (1,1,2).
Crossrefs
Cf. A294627.
Programs
-
GAP
a:=[1,1,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, Jul 30 2018
-
Maple
seq(coeff(series((1-x^2)/(1-x-x^2-2*x^3), x,n+1),x,n),n=0..40); # Muniru A Asiru, Aug 02 2018
-
Mathematica
LinearRecurrence[{1, 1, 2}, {1, 1, 1}, 40] CoefficientList[ Series[(x^2 - 1)/(2x^3 + x^2 + x - 1), {x, 0, 35}], x] (* Robert G. Wilson v, Jul 30 2018 *)
-
PARI
Vec((1-x^2)/(1-x-x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Jan 17 2012
-
Sage
from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(1,1,1,1,1,2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
Formula
a(3*n) = 2*a(3*n-1)+2, a(3*n+1) = 2*a(3*n)-1, a(3*n+2) = 2*a(3*n+1)-1, a(0)=1.
G.f.: (1-x^2)/(1-x-x^2-2*x^3).
a(n) = ((-1)^n*A130815(n+2) + 3*2^n)/7. - R. J. Mathar, Nov 30 2008
From Paul Curtz, Oct 02 2009: (Start)
a(n) = A140295(n+2)/4.
a(n+1) - 2a(n) = period 3: repeat -1,-1,2 = -A061347.
a(n) - a(n-1) = 0,0,3,3,6,15,27,54,111,... = 3*A077947.
a(n) - a(n-2) = 0,3,6,9,21,42,81,....
Extensions
Corrected by T. D. Noe, Nov 01 2006, Nov 07 2006
Typo in definition corrected by Paul Curtz, Oct 02 2009
Comments