cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122552 a(0)=a(1)=a(2)=1, a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n > 2.

Original entry on oeis.org

1, 1, 1, 4, 7, 13, 28, 55, 109, 220, 439, 877, 1756, 3511, 7021, 14044, 28087, 56173, 112348, 224695, 449389, 898780, 1797559, 3595117, 7190236, 14380471, 28760941, 57521884, 115043767, 230087533, 460175068, 920350135, 1840700269, 3681400540
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2006

Keywords

Comments

Equals INVERT transform of (1, 0, 3, 0, 3, 0, 3, ...). - Gary W. Adamson, Apr 27 2009
No term is divisible by 3. - Vladimir Joseph Stephan Orlovsky, Mar 24 2011
For n > 3, a(n) is the number of quaternary sequences of length n-1 starting with q(0) = 0, in which all triples (q(i), q(i+1), q(i+2)) contain digits 0 and 3; cf. A294627. - Wojciech Florek, Jul 30 2018
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, dominoes, and two colors of trominoes, with the restriction that the first tile cannot be a domino. - Greg Dresden and Bora Bursalı, Aug 31 2023

Examples

			It is shown in A294627 that there are 42 quaternary sequences (i.e., build from four digits 0, 1, 2, 3) and having both 0 and 3 in every (consecutive) triple. Only a(5=4+1) = 13 of them start with 0: 003x, 030x, 03y0, 0y30, 0330, where x = 0, 1, 2, 3 and y = 1, 2.
		

Crossrefs

Cf. A294627.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, Jul 30 2018
  • Maple
    seq(coeff(series((1-x^2)/(1-x-x^2-2*x^3), x,n+1),x,n),n=0..40); # Muniru A Asiru, Aug 02 2018
  • Mathematica
    LinearRecurrence[{1, 1, 2}, {1, 1, 1}, 40]
    CoefficientList[ Series[(x^2 - 1)/(2x^3 + x^2 + x - 1), {x, 0, 35}], x] (* Robert G. Wilson v, Jul 30 2018 *)
  • PARI
    Vec((1-x^2)/(1-x-x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(1,1,1,1,1,2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(3*n) = 2*a(3*n-1)+2, a(3*n+1) = 2*a(3*n)-1, a(3*n+2) = 2*a(3*n+1)-1, a(0)=1.
G.f.: (1-x^2)/(1-x-x^2-2*x^3).
a(n) = ((-1)^n*A130815(n+2) + 3*2^n)/7. - R. J. Mathar, Nov 30 2008
From Paul Curtz, Oct 02 2009: (Start)
a(n) = A140295(n+2)/4.
a(n+1) - 2a(n) = period 3: repeat -1,-1,2 = -A061347.
a(n) - a(n-1) = 0,0,3,3,6,15,27,54,111,... = 3*A077947.
a(n) - a(n-2) = 0,3,6,9,21,42,81,....
a(n) - a(n-3) = 3,6,12,24,... = A007283 = 3*A000079.
a(3n) + a(3n+1) + a(3n+2) = 3,24,192,... = A103333(n+1) = A140295(3n) + A140295(3n+1) + A140295(3n+2).
See A078010, A139217, A139218. (End)

Extensions

Corrected by T. D. Noe, Nov 01 2006, Nov 07 2006
Typo in definition corrected by Paul Curtz, Oct 02 2009