cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A153515 Terms of A122782 which are not Carmichael numbers A002997.

Original entry on oeis.org

1, 4, 10, 15, 20, 65, 124, 190, 217, 310, 435, 781, 1541, 1891, 3565, 3820, 4123, 4495, 5461, 5611, 5662, 5731, 6735, 7449, 7813, 8029, 8290, 9881, 11041, 11476, 12801, 13021, 13333, 13981, 14981, 15751, 16297, 17767, 20345, 20710, 21361, 22791
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

Are there entries in this sequence which are also in A153513 ?
Yes. This subsequence starts 721801, 873181, 4504501, 8646121, 9006401, 9863461, 10403641, 10680265,... (similar to A153580). - R. J. Mathar, Mar 30 2011

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], !PrimeQ[#] && PowerMod[5, #, # ] == Mod[5, #] && Mod[#, CarmichaelLambda[#]] != 1 &] (* Amiram Eldar, Sep 19 2019 *)

A005936 Pseudoprimes to base 5.

Original entry on oeis.org

4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, 11041, 11476, 12801, 13021, 13333, 13981, 14981, 15751, 15841, 16297, 17767, 21361, 22791, 23653, 24211, 25327, 25351, 29341, 29539
Offset: 1

Views

Author

Keywords

Comments

According to Karsten Meyer, 4 should be excluded, following the strict definition in Crandall and Pomerance. - May 16 2006
Theorem: If both numbers q and (2q - 1) are primes (q is in the sequence A005382) then n = q*(2q - 1) is a pseudoprime to base 5 (n is in the sequence) if and only if q is of the form 10k + 1. 1891, 88831, 146611, 218791, 721801, ... are such terms. This sequence is a subsequence of A122782. - Farideh Firoozbakht, Sep 14 2006
Composite numbers n such that 5^(n-1) == 1 (mod n).

References

  • R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 124, p. 43, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Pseudoprimes to other bases: A001567 (2), A005935 (3), A005937 (6), A005938 (7), A005939 (10).

Programs

  • Mathematica
    base = 5; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)
    Select[Range[30000],CompositeQ[#]&&PowerMod[5,#-1,#]==1&] (* Harvey P. Dale, Jul 21 2023 *)

Extensions

More terms from David W. Wilson, Aug 15 1996

A122780 Nonprimes k such that 3^k == 3 (mod k).

Original entry on oeis.org

1, 6, 66, 91, 121, 286, 561, 671, 703, 726, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7107, 7381, 8205, 8401, 8646, 8911, 10585, 11011, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 11 2006

Keywords

Comments

Theorem: If q!=3 and both numbers q and (2q-1) are primes then k=q*(2q-1) is in the sequence. 6, 91, 703, 1891, 2701, 12403, 18721, 38503, 49141, ... is the related subsequence.
The terms > 1 and coprime to 3 of this sequence are the base-3 pseudoprimes, A005935. - M. F. Hasler, Jul 19 2012 [Corrected by Jianing Song, Feb 06 2019]

Examples

			66 is composite and 3^66 = 66*468229611858069884271524875811 + 3 so 66 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isA122780 := proc(n)
        if isprime(n) then
            false;
        else
            modp( 3 &^ n,n) = modp(3,n) ;
        end if;
    end proc:
    for n from 1 do
        if isA122780(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Jul 15 2012
  • Mathematica
    Select[Range[30000], ! PrimeQ[ # ] && Mod[3^#, # ] == Mod[3, # ] &]
    Join[{1},Select[Range[20000],!PrimeQ[#]&&PowerMod[3,#,#]==3&]] (* Harvey P. Dale, Apr 30 2023 *)
  • PARI
    is_A122780(n)={n>0 & Mod(3, n)^n==3 & !ispseudoprime(n)} \\ M. F. Hasler, Jul 19 2012

A123091 Numbers k such that k divides 5^k - 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 11, 13, 15, 17, 19, 20, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 124, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 190, 191, 193, 197, 199, 211, 217, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Alexander Adamchuk, Nov 04 2006

Keywords

Comments

All primes are the terms of a(n). Nonprimes in a(n) are listed in A122782(n) = {1,4,10,15,20,65,124,190,217,310,435,561,781,...}. All pseudoprimes to base 5 are the terms of a(n). They are listed in A005936(n) = {4,124,217,561,781,...}. Numbers n up to 10^6 such that n divides 5^n + 5 are {1,2,5,6,10,30,70,1565,2806,3126,51670,58290,214405,285286,378258}.

Crossrefs

Cf. A122782 (nonprimes n such that 5^n==5 (mod n)).
Cf. A005936 (pseudoprimes to base 5).
Cf. A067946 (numbers n such that n divides 5^n-1).
Cf. A015951 (numbers n such that n | 5^n + 1).

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[(PowerMod[5,#,# ]-5)/# ]&]
  • PARI
    is(n)=Mod(5,n)^n==5 \\ Charles R Greathouse IV, Nov 04 2016

A122784 Nonprimes k such that 7^k == 7 (mod k).

Original entry on oeis.org

1, 6, 14, 21, 25, 42, 105, 133, 231, 301, 325, 525, 561, 703, 817, 1105, 1729, 1825, 2101, 2353, 2465, 2821, 3277, 3325, 3486, 3913, 4011, 4525, 4825, 5565, 5719, 5901, 6601, 6697, 7525, 8321, 8911, 9331, 10225, 10325, 10585, 10621, 11041, 11521
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 12 2006

Keywords

Comments

Theorem: If both numbers q and 2q-1 are primes then q*(2q-1) is in the sequence iff q=2 or mod(q,14) is in the set {1, 5, 13}. 6, 703, 18721, 38503, 88831, 104653, 146611, 188191,... are such terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], ! PrimeQ[#] && PowerMod[7, #, #] == Mod[7, #] &]
    With[{nn=12000},Select[Complement[Range[nn],Prime[Range[PrimePi[ nn]]]], PowerMod[7,#,#]==Mod[7,#]&]] (* Harvey P. Dale, Jul 12 2012 *)

A290543 Composite numbers n such that A290542(n) >= 2.

Original entry on oeis.org

28, 65, 66, 85, 91, 105, 117, 121, 124, 133, 145, 153, 154, 165, 185, 186, 190, 205, 217, 221, 231, 244, 246, 247, 259, 273, 276, 280, 286, 292, 301, 305, 310, 325, 341, 343, 344, 357, 364, 366, 369, 370, 377, 385, 396, 418, 425, 427, 429, 430, 435, 451
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 05 2017

Keywords

Comments

Is a(n) ~ n * log n as n -> infinity?

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [4..451] do if not IsPrime(n) then r:=Floor(Sqrt(n)); for k in [2..r] do if Modexp(k, n, n) eq k then Append(~lst, n); break; end if; end for; end if; end for; lst;
  • Mathematica
    Select[Flatten@ Position[#, k_ /; k >= 2], CompositeQ] &@ Table[SelectFirst[Range[2, Sqrt@ n], PowerMod[#, n , n] == Mod[#, n] &], {n, 451}] (* Michael De Vlieger, Aug 09 2017 *)
Showing 1-6 of 6 results.