cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123167 Continued fraction for c=sqrt(2)*(exp(sqrt(2))+1)/(exp(sqrt(2))-1). a(2*n-1) = 8*n-6, a(2*n) = 4*n-1.

Original entry on oeis.org

2, 3, 10, 7, 18, 11, 26, 15, 34, 19, 42, 23, 50, 27, 58, 31, 66, 35, 74, 39, 82, 43, 90, 47, 98, 51, 106, 55, 114, 59, 122, 63, 130, 67, 138, 71, 146, 75, 154, 79, 162, 83, 170, 87, 178, 91, 186, 95, 194, 99, 202, 103, 210, 107, 218, 111, 226, 115, 234, 119, 242, 123
Offset: 1

Views

Author

Benoit Cloitre, Oct 02 2006

Keywords

Comments

This continued fraction shows exp(sqrt(2)) is irrational.
If a(0)=-1 and offset 0: a(6*n) - a(6*n+1) + a(6*n+2) = 0, a(6*n +3) - 4*a(6*n+4) + a(6*n+5) = 0.
Conjecture: Numerator of 4/n - 2/n^2. - Wesley Ivan Hurt, Jul 11 2016

Examples

			c = 2.3227261394604270...
		

References

  • J. Borwein and D. Bailey, Mathematics by experiment, plausible reasoning in the 21st Century, A. K. Peters, p. 77
  • J. Borwein and K. Devlin, The computer as crucible: an introduction to experimental mathematics, A. K. Peters 2009, p. 91.

Crossrefs

Cf. A123168.

Programs

  • GAP
    a := [2,3,10,7];; for n in [5..10^3] do a[n] := 2*a[n-2] - a[n-4]; od; a; # Muniru A Asiru, Jan 28 2018
  • Magma
    [(2*n-1)*2^(n mod 2): n in [1..50]]; // G. C. Greubel, Jan 27 2018
    
  • Maple
    A123167 := proc(n)
        if type(n,'even') then
            2*n-1 ;
        else
            4*n-2 ;
        end if;
    end proc: # R. J. Mathar, Jul 25 2013
  • Mathematica
    a[ n_] := (2 n - 1) 2^Mod[n, 2]; (* Michael Somos, Apr 25 2015 *)
  • PARI
    {a(n) = (2*n - 1) * 2^(n%2)}; \\ Michael Somos, Feb 04 2012
    

Formula

a(n) = - A123168(2 - n) for all n in Z unless n = 1. - Michael Somos, Feb 24 2012
From Colin Barker, Feb 08 2012: (Start)
Empirical g.f.: x*(2+3*x+6*x^2+x^3)/(1-2*x^2+x^4).
Empirical a(n) = 2*a(n-2) - a(n-4). (End)