cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124174 Sophie Germain triangular numbers tr: 2*tr+1 is also a triangular number.

Original entry on oeis.org

0, 1, 10, 45, 351, 1540, 11935, 52326, 405450, 1777555, 13773376, 60384555, 467889345, 2051297326, 15894464365, 69683724540, 539943899076, 2367195337045, 18342198104230, 80414957735001, 623094791644755, 2731741367653000, 21166880717817451, 92798791542467010
Offset: 1

Views

Author

Zak Seidov, Dec 04 2006

Keywords

Comments

Sophie Germain triangular numbers are one of an infinite number of triangular number sets tr where 2*tn^2*tr + tn is a triangular number: tr and tn both also being triangular numbers with tn being held constant. For the present numbers, a(n) = tr, 8*(2*tr + 1) + 1 = 16*tr + 9 is also a square, the square root of which is 2*y+1 with y being the argument of the triangular number 2*tr + 1. Now (1/2)*(y^2+y) = a^2 + a + 1 from the definition of Sophie Germain triangular numbers. Multiply both sides by 4 and subtract 3 to get 2*y^2 + 2*y - 3 = 4*a^2 + 4*a + 1 (a square). Cf. A124124: Numbers y such that 2*y^2 + 2*y - 3 is a square. The values y are the same y such that 2*y+1 = sqrt(16*tr + 9). - Kenneth J Ramsey, Jun 25 2011
Values of k such that 2*k+1 and 9*k+1 are both triangular numbers. - Colin Barker, Jun 29 2016

Crossrefs

Programs

  • Magma
    I:=[0,1,10,45]; [n le 4 select I[n] else 34*Self(n-2)-Self(n-4)+11: n in [1..30]]; // Vincenzo Librandi, Sep 29 2011
    
  • Maple
    a:= n-> (Matrix([[10, 1, 0, 0, 1]]). Matrix(5, (i, j)-> if i=j-1 then 1 elif j=1 then [1, 34, -34, -1, 1][i] else 0 fi)^n)[1, 4]: seq(a(n), n=1..30); # Alois P. Heinz, Apr 27 2009
  • Mathematica
    LinearRecurrence[{1,34,-34,-1,1}, {0,1,10,45,351},30] (* Harvey P. Dale, Sep 28 2011 *)
  • PARI
    a=[0, 1, 10, 45, 351];for(n=5,20,a=concat(a,a[#a]+34*a[#a-1]- 34*a[#a-2]-a[#a-3]+a[#a-4]));a \\ Charles R Greathouse IV, Sep 29 2011

Formula

a(n) = (A124124(n)^2 + A124124(n)-2)/4.
a(n) = 35*(a(n-2) - a(n-4)) + a(n-6).
From Peter Pein, Dec 04 2006: (Start)
a(n) = -11/32 + (-3 - 2*sqrt(2))^n/64 + (5*(3 - 2*sqrt(2))^n)/32 + (-3 - 2*sqrt(2))^n/(32*sqrt(2)) - (5*(3 - 2*sqrt(2))^n)/(32*sqrt(2)) + (-3 + 2*sqrt(2))^n/64 - (-3 + 2*sqrt(2))^n/(32*sqrt(2)) + (5*(3 + 2*sqrt(2))^n)/32 + (5*(3 + 2*sqrt(2))^n)/(32*sqrt(2));
O.g.f.: (x*(1 + 9*x + x^2))/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2));
E.g.f.: (-22*exp(x) + exp(-3*x+2*x*sqrt(2))*(1-sqrt(2)) - 5*exp(3*x-2*x*sqrt(2))*(-2 + sqrt(2)) + exp(-3*x-2*x*sqrt(2))*(1+sqrt(2)) + 5*exp(3*x+2*x*sqrt(2))*(2+sqrt(2)))/64. (End)
a(n) = 34*a(n-2) - a(n-4) + 11. - Kieren MacMillan, Nov 08 2008
a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5) with a(0)=0, a(1)=1, a(2)=10, a(3)=45, a(4)=351. - Harvey P. Dale, Sep 28 2011
a(n) = x*(x + 1)/2 where x = A216134(n) = (2*A000129(n) + (-1)^n*(A000129(2*floor(n/2) - 1) - (-1)^n)/2). - Raphie Frank, Jan 04 2013
a(n+2) = 1/2*((3/2*sqrt(8*a(n) + 1) + sqrt(16*a(n) + 9) - 1/2)*(3/2*sqrt(8*a(n) + 1) + sqrt(16*a(n) + 9) + 1/2)); a(0) = 0, a(1) = 1. - Raphie Frank, Jan 29 2013

Extensions

More terms from Alois P. Heinz, Apr 27 2009