Original entry on oeis.org
0, 0, 1, 3, 10, 15, 45, 120, 351, 528, 1540, 4095, 11935, 17955, 52326, 139128, 405450, 609960, 1777555, 4726275, 13773376, 20720703, 60384555, 160554240, 467889345, 703893960, 2051297326, 5454117903, 15894464365, 23911673955, 69683724540, 185279454480
Offset: 0
a(18) = 35*(52326 - 1540) + 45 = 1777555,
a(19) = 35*(139128 - 4095) + 120 = 4726275.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,34,0,-34,0,-1,0,1).
Cf. (sqrt(8a(2n+1) + 1) - 1)/2 =
A006451(n).
-
LinearRecurrence[{0,1,0,34,0,-34,0,-1,0,1},{0,0,1,3,10,15,45,120,351,528},40] (* Harvey P. Dale, Aug 04 2019 *)
-
concat([0,0], Vec(-x^2*(3*x^5+x^4+12*x^3+9*x^2+3*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)*(x^4+6*x^2+1)) + O(x^100))) \\ Colin Barker, Jun 23 2015
A006454
Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.
Original entry on oeis.org
0, 3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726275, 20720703, 160554240, 703893960, 5454117903, 23911673955, 185279454480, 812293020528, 6294047334435, 27594051024015, 213812329916328, 937385441796000, 7263325169820735, 31843510970040003, 246739243443988680
Offset: 0
From _Raphie Frank_, Sep 28 2012: (Start)
35*(528 - 15) + 0 = 17955 = a(6),
35*(4095 - 120) + 3 = 139128 = a(7),
35*(17955 - 528) + 15 = 609960 = a(8),
35*(139128 - 4095) + 120 = 4726275 = a(9). (End)
From _Raphie Frank_, Feb 02 2013: (Start)
a(7) = 139128 and a(9) = 4726275.
a(9) = (2*(sqrt(8*a(7) + 1) - 1)/2 + 3*sqrt(a(7) + 1) + 1)^2 - 1 = (2*(sqrt(8*139128 + 1) - 1)/2 + 3*sqrt(139128 + 1) + 1)^2 - 1 = 4726275.
a(9) = 1/2*((3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)^2 + (3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)) = 1/2*((3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)^2 + (3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)) = 4726275. (End)
From _Vladimir Pletser_, Apr 30 2017: (Start)
For n=2, b(n)=5, a(n)=15
For n=5, b(n)=90, a(n)= 4095
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. (End)
- Edward J. Barbeau, Pell's Equation, New York: Springer-Verlag, 2003, p. 17, Exercise 1.2.
- Allan J. Gottlieb, How four dogs meet in a field, and other problems, Technology Review, Jul/August 1973, pp. 73-74.
- Vladimir Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vladimir Pletser, Table of n, a(n) for n = 0..1000 (first 60 terms from Vincenzo Librandi)
- M.A. Bennett and A. Ghadermarzi, Data on Mordell's curve.
- Michael A. Bennett and Amir Ghadermarzi, Mordell's equation : a classical approach, arXiv:1311.7077 [math.NT], 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Jeffrey Shallit, Letter to N. J. A. Sloane, Oct. 1975.
- K. B. Subramaniam, Almost Square Triangular Numbers, The Fibonacci Quarterly, Vol. 37, No. 3 (1999), pp. 194-197.
- Eric Weisstein's World of Mathematics, Mordell Curve.
- Index entries for linear recurrences with constant coefficients, signature (1,34,-34,-1,1).
-
I:=[0,3,15,120,528,4095]; [n le 6 select I[n] else 35*(Self(n-2) - Self(n-4)) + Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 21 2015
-
A006454:=-3*z*(1+4*z+z**2)/(z-1)/(z**2-6*z+1)/(z**2+6*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,3','2,15'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=b*(b+1)/2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do: # Vladimir Pletser, Apr 30 2017
-
Clear[a]; a[0] = a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := 6a[n - 2] - a[n - 4]; Array[a, 40]^2 - 1 (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
LinearRecurrence[{1,34,-34,-1,1},{0,3,15,120,528},30] (* Harvey P. Dale, Feb 18 2023 *)
-
concat(0, Vec(3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30))) \\ Colin Barker, Apr 30 2017
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
A216134
Numbers k such that 2 * A000217(k) + 1 is triangular.
Original entry on oeis.org
0, 1, 4, 9, 26, 55, 154, 323, 900, 1885, 5248, 10989, 30590, 64051, 178294, 373319, 1039176, 2175865, 6056764, 12681873, 35301410, 73915375, 205751698, 430810379, 1199208780, 2510946901, 6989500984, 14634871029, 40737797126, 85298279275, 237437281774
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Wikipedia, Pell numbers
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).
-
LinearRecurrence[{1, 6, -6, -1, 1}, {0, 1, 4, 9, 26}, 40] (* T. D. Noe, Sep 03 2012 *)
-
Vec( x*(1+3*x-x^2-x^3)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 13 2014
-
isok(n) = ispolygonal(n*(n+1) + 1, 3); \\ Michel Marcus, Aug 13 2014
A069017
Triangular numbers of the form k^2 + k + 1.
Original entry on oeis.org
1, 3, 21, 91, 703, 3081, 23871, 104653, 810901, 3555111, 27546753, 120769111, 935778691, 4102594653, 31788928731, 139367449081, 1079887798153, 4734390674091, 36684396208461, 160829915470003, 1246189583289511, 5463482735306001, 42333761435634903
Offset: 1
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)) )); // G. C. Greubel, Dec 01 2018
-
Do[a = n(n + 1) + 1; b = Floor[Sqrt[2a]]; If[b(b + 1) == 2a, Print[a]], {n, 1, 106}] (* Robert G. Wilson v *)
Select[Table[n^2+n+1,{n,0,206*10^6}],OddQ[Sqrt[8#+1]]&] (* The program takes a long time to run. *) (* Harvey P. Dale, Sep 22 2017 *)
CoefficientList[Series[(x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)), {x,0,50}], x] (* G. C. Greubel, Dec 01 2018 *)
-
Vec((x^4+2*x^3-16*x^2+2*x+1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)) +O(x^66)) /* Joerg Arndt, Mar 25 2013 */
-
s=((x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 01 2018
A274579
Values of k such that 2*k+1 and 5*k+1 are both triangular numbers.
Original entry on oeis.org
0, 1, 7, 27, 540, 2002, 10660, 39501, 779247, 2887450, 15372280, 56960982, 1123674201, 4163701465, 22166817667, 82137697110, 1620337419162, 6004054625647, 31964535704101, 118442502272205, 2336525434757970, 8657842606482076, 46092838318496542
Offset: 1
7 is in the sequence because 2*7+1 = 15, 5*7+1 = 36, and 15 and 36 are both triangular numbers.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1442,-1442,0,0,-1,1).
-
concat(0, Vec(x^2*(1+6*x+20*x^2+513*x^3+20*x^4+6*x^5+x^6)/((1-x)*(1+6*x-x^2)*(1-6*x-x^2)*(1+38*x^2+x^4)) + O(x^30)))
-
isok(n) = ispolygonal(2*n+1, 3) && ispolygonal(5*n+1, 3); \\ Michel Marcus, Jun 29 2016
A274680
Values of n such that 2*n+1 and 4*n+1 are both triangular numbers.
Original entry on oeis.org
0, 16065, 545751, 21394547226, 726784809030, 28491418065071115, 967869505172593485, 37942420317086720855700, 1288925370210688376036076, 50528452330120333959563160501, 1716479960463788790499334882595, 67289447366315927998308608003134830
Offset: 1
16065 is in the sequence because 2*16065+1 = 32131, 4*16065+1 = 64261, and 32131 and 64261 are both triangular numbers.
-
Rest@ CoefficientList[Series[459 x^2 (35 + 1154 x + 35 x^2)/((1 - x) (1 - 1154 x + x^2) (1 + 1154 x + x^2)), {x, 0, 12}], x] (* Michael De Vlieger, Jul 02 2016 *)
-
isok(n) = ispolygonal(2*n+1, 3) && ispolygonal(4*n+1, 3)
-
concat(0, Vec(459*x^2*(35+1154*x+35*x^2)/((1-x)*(1-1154*x+x^2)*(1+1154*x+x^2)) + O(x^20)))
A274756
Values of n such that 2*n+1 and 6*n+1 are both triangular numbers.
Original entry on oeis.org
0, 945, 13167, 35578242, 495540990, 1338951572595, 18649189618605, 50390103447476100, 701843601611053692, 1896381151803363988917, 26413182084381205040235, 71368408216577696911440390, 994033693861758668873164410, 2685878672926303893761783662455
Offset: 1
945 is in the sequence because 2*945+1 = 1891, 6*945+1 = 5671, and 1891 and 5671 are both triangular numbers.
-
isok(n) = ispolygonal(2*n+1, 3) && ispolygonal(6*n+1, 3)
-
concat(0, Vec(63*x^2*(15+194*x+15*x^2)/((1-x)*(1-194*x+x^2)*(1+194*x+x^2)) + O(x^20)))
A174685
Indices i such that 2*A000326(i)+1 is also a pentagonal number.
Original entry on oeis.org
0, 75, 244, 86359, 281384, 99658019, 324716700, 115005267375, 374722790224, 132715978892539, 432429775201604, 153154124636722439, 499023585859860600, 176739727114798801875, 575872785652503930604, 203957491936353180641119
Offset: 1
Using P(n) = A000326(n) we have:
a(1) = 0 because 2*P(0)+1 = 2*0+1 = 1 = P(1).
a(2) = 75 because 2*P(75)+1 = 2*8400+1 = 16801 = P(106).
a(3) = 244 because 2*P(244)+1 = 2*89182+1 = 178365 = P(345).
-
LinearRecurrence[{1,1154,-1154,-1,1},{0,75,244,86359,281384},30] (* Harvey P. Dale, Jul 17 2014 *)
-
/* Jack Brennen, who extended this sequence, found that, other than the trivial pair (0,1), you need to solve: u^2 - 2*v^2 = 23. And take only those values where u and v are both congruent to 5 mod 6. Then you have P((u+1)/6) = 2*P((v+1)/6)+1. The following PARI/GP will give the nontrivial answers: */
{forstep(i=7,47,8,
print(Vec(lift(Mod((x+1),x^2-2)^i*(4*x-3)+(x+1))/6));
print(Vec(lift(Mod((x+1),x^2-2)^i*(4*x+3)+(x+1))/6)))}
A274832
Values of n such that 2*n+1 and 7*n+1 are both triangular numbers (A000217).
Original entry on oeis.org
0, 27, 297, 24570, 267030, 22064157, 239792967, 19813588740, 215333817660, 17792580624687, 193369528466037, 15977717587380510, 173645621228683890, 14347972600887073617, 155933574493829667507, 12884463417879004727880, 140028176249837812737720
Offset: 1
27 is in the sequence because 2*27+1 = 55, 7*27+1 = 190, and 55 and 190 are both triangular numbers.
-
LinearRecurrence[{1, 898, -898, -1, 1}, {0, 27, 297, 24570, 267030}, 20] (* Paolo Xausa, Oct 21 2024 *)
-
isok(n) = ispolygonal(2*n+1, 3) && ispolygonal(7*n+1, 3)
-
concat(0, Vec(27*x^2*(1+10*x+x^2)/((1-x)*(1-30*x+x^2)*(1+30*x+x^2)) + O(x^20)))
A217000
Triangular numbers of the form 2p-1 where p is prime.
Original entry on oeis.org
3, 21, 45, 105, 253, 325, 465, 561, 861, 1081, 1225, 1485, 1653, 1953, 3741, 4005, 4753, 6441, 7021, 7381, 8001, 9045, 10153, 13041, 15753, 19701, 20301, 21945, 23005, 23653, 24753, 25425, 28441, 32385, 35245, 37401, 38781, 41041, 43365, 45753, 46665, 48205
Offset: 1
For A000217 = {0, 1, 3, 6, 10, 15, 21, 28,...}, A000217(6) = 21 = 2*(11)-1. As 11 is prime then A000217(6) is in the sequence. A000217(5) = 15 = 2*(8)-1. As 8 is not prime then A000217(5) is not in the sequence.
-
tn := unapply(n*(n+1)/2,n):
f := unapply((t+1)/2,t):
T := []: N := []: P := []:
for k from 0 to 5000 do
t:=tn(k):
p := f(k):
if p = floor(p) then
p = floor(p):
if isprime(p) then
T := [op(T), t]:
N := [op(N), k]:
P := [op(P), p]:
end if:
end if:
if nops(T) = 50 then
break:
end if:
end do:
T := T;
-
tri = 0; t = {}; Do[tri = tri + n; If[PrimeQ[(tri + 1)/2], AppendTo[t, tri]], {n, 500}]; t (* T. D. Noe, Sep 24 2012 *)
Showing 1-10 of 12 results.
Comments