cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A071576 a(n) = least k such that 2ik + 1 is prime for all 1 <= i <= n.

Original entry on oeis.org

1, 1, 1, 165, 5415, 12705, 256410, 256410, 6480303060, 217245863835, 946622690475, 35511547806735, 439116128090640, 5714676453270219435
Offset: 1

Views

Author

Benoit Cloitre, May 31 2002

Keywords

Crossrefs

Programs

  • Mathematica
    k = 1; Do[ While[p = Table[2*i*k + 1, {i, 1, n}]; Union[ PrimeQ[p]] != {True}, k++ ]; Print[k], {n, 1, 15}] (* Robert G. Wilson v *)
  • PARI
    for(n=1,6,s=1; while(sum(i=1,n,isprime(2*s*i+1))
    				

Extensions

Extended by Robert G. Wilson v, Jun 06 2002
a(9) from Ryan Propper, Jun 20 2005
a(10)-a(13) from Don Reble, Nov 05 2006
a(14) from Giovanni Resta, Apr 01 2017

A124514 Numbers k for which 2*k-1, 4*k-1, 8*k-1, 16*k-1, 32*k-1, 64*k-1 and 128*k-1 are primes.

Original entry on oeis.org

561330, 1082115, 1164735, 5128905, 5154945, 6157350, 7015155, 7072770, 9549960, 11551830, 12088065, 14421825, 18544365, 19099920, 21194760, 24580050, 25392720, 26277285, 31400085, 34359030, 42932385, 44087025, 47915595
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[3200000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64, 128}*# - 1) &] (* Ray Chandler, Nov 22 2006 *)
    apQ[n_]:=AllTrue[NestList[2#&,2n,6]-1,PrimeQ]; Select[15*Range[ 32*10^5], apQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 08 2019 *)

A125113 Numbers n such that 2n-1, 4n-1, 8n-1, 16n-1, 32n-1 and 64n-1 are primes.

Original entry on oeis.org

45, 31710, 63570, 202635, 405405, 534600, 561330, 589305, 666945, 799350, 903045, 979125, 1082115, 1122660, 1164735, 1303035, 1424475, 1620645, 1669995, 1892100, 1981020, 2044440, 2164230, 2222415, 2329470, 2332125, 2447445, 2448855
Offset: 1

Views

Author

Artur Jasinski, Nov 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[200000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64}*# - 1) &] (* Ray Chandler, Nov 22 2006 *)
    Select[15*Range[164000],AllTrue[# 2^Range[6]-1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 20 2020 *)

Extensions

Extended by Ray Chandler, Nov 22 2006

A124017 Numbers n for which 2n-1, 4n-1, 8n-1, 16n-1 and 32n-1 are primes.

Original entry on oeis.org

45, 90, 26820, 26925, 30705, 31710, 33375, 63420, 63570, 71805, 83865, 93075, 103185, 127140, 134025, 148050, 170460, 202635, 211035, 223305, 269505, 297225, 303660, 329175, 335625, 362505, 387975, 405270, 405405, 406425, 409755, 463335
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[40000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32}*# - 1) &] (* Ray Chandler, Nov 22 2006 *)
    Select[15*Range[31000],AllTrue[#*2^Range[5]-1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 05 2019 *)

A124493 Numbers k for which 2*k-1, 4*k-1 and 8*k-1 are primes.

Original entry on oeis.org

3, 6, 21, 45, 90, 180, 255, 360, 510, 516, 615, 705, 726, 741, 756, 906, 945, 951, 966, 1230, 1350, 1410, 1725, 1746, 1770, 1911, 1956, 2541, 2700, 2721, 2925, 3051, 3066, 3225, 3540, 3576, 3675, 3951, 4485, 4611, 5295, 5346, 5355, 5586, 5736, 5775, 5901
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[3*Range[2000], And @@ PrimeQ /@ ({2, 4, 8}*# - 1) &] (* Ray Chandler, Nov 22 2006 *)

A124494 Numbers k for which 2*k-1, 4*k-1, 8*k-1 and 16*k-1 are primes.

Original entry on oeis.org

3, 45, 90, 180, 255, 615, 705, 1350, 1770, 3225, 5295, 5775, 5955, 6060, 8580, 9855, 9945, 11175, 13095, 13740, 15195, 21825, 26820, 26925, 27615, 28920, 30075, 30705, 31710, 33375, 35700, 37350, 37665, 41250, 43770, 49185, 50700, 52185, 53640
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Crossrefs

Subsequence of A124493. Supersequence of A124017.

Programs

  • Mathematica
    Select[3*Range[20000], And @@ PrimeQ /@ ({2, 4, 8, 16}*# - 1) &] (* Ray Chandler, Nov 22 2006 *)
    Select[Range[3,55000,3],AllTrue[2^Range[4] #-1,PrimeQ]&] (* or, faster  *) Join[{3},Select[Range[ 15,55000,15],AllTrue[ 2^Range[4] #-1,PrimeQ]&]] (* Harvey P. Dale, Feb 02 2025 *)

Extensions

Extended by Ray Chandler, Nov 22 2006

A124515 Numbers k for which 2*k-1, 4*k-1, 8*k-1, 16*k-1, 32*k-1, 64*k-1, 128*k-1 and 256*k-1 are primes.

Original entry on oeis.org

9549960, 26277285, 42932385, 85864770, 99239790, 113183070, 152596290, 172159515, 198479580, 237059175, 287482065, 305192580, 342533490, 382203030, 542591115, 563002110, 597825570, 686106720, 742227135, 786875025, 1135145760
Offset: 1

Views

Author

Artur Jasinski, Nov 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[15*Range[76000000], And @@ PrimeQ /@ ({2, 4, 8, 16, 32, 64, 128, 256}*# - 1) &] (* Ray Chandler, Nov 22 2006 *)

Extensions

Extended by Ray Chandler, Nov 22 2006

A244435 a(n) is the smallest number m such that 2*k*m - 1 is composite for all k, 0 < k < n+1.

Original entry on oeis.org

5, 13, 13, 62, 73, 73, 89, 118, 118, 118, 118, 118, 236, 926, 959, 959, 959, 959, 959, 959, 1063, 1474, 1474, 1474, 1667, 1667, 6118, 8249, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 9098, 35573, 35573, 35573, 57448, 57448, 57448, 57448, 57448, 57448, 57448
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 19 2014

Keywords

Comments

a(2)=a(3)=13, a(5)=a(6)=73, ... a(29)=a(30)=...=a(43)=9098, ... . A244436 gives numbers k such that a(k) is not in the set {a(k-1), a(k+1)}.

Crossrefs

Programs

  • Maple
    M:= 0: R:= NULL:
    for m from 2 while M < 100 do
      for i from 0 while not isprime(2*i*m-1) do od:
      if i-1 > M then R:= R, m$(i-1-M); M:= i-1; fi;
    od:
    R; # Robert Israel, May 03 2021
  • PARI
    isok(n, m) = for(k=1, n, my(x=2*k*m-1); if ((x==1) || isprime(x), return(0))); return (1);
    a(n) = my(m=1); while(!isok(n, m), m++); m; \\ Michel Marcus, May 04 2021

A305740 a(n) is the smallest k such that 10^m*k + 1 is prime for all m in 1..n.

Original entry on oeis.org

1, 1, 4, 7, 7, 170716, 170926, 26373004, 247201983, 10562770680, 118345066231, 54717848613610
Offset: 1

Views

Author

Jon E. Schoenfield, Jun 23 2018

Keywords

Comments

a(12) > 3*10^11.

Examples

			10^1*1 + 1 = 11 (prime), so a(1) = 1.
10^2*1 + 1 = 101 (also prime), so a(2) = 1 as well.
10^3*1 + 1 = 1001 = 7*143, so a(3) > 1;
10^1*2 + 1 = 21 = 3*7, so a(3) > 2;
10^2*3 + 1 = 301 = 7*43, so a(3) > 3;
however, for m = 1..3, 10^m*4 + 1 yields 41, 401, and 4001, each of which is prime, so a(3) = 4.
		

Crossrefs

Cf. A000040 (primes), A124417, A124516.

Extensions

a(12) from Giovanni Resta, Jun 25 2018
Showing 1-9 of 9 results.