A125641 Square of the (3,1)-entry of the 3 X 3 matrix M^n, where M = [1,0,0; 1,1,0; 1,i,1].
1, 5, 18, 52, 125, 261, 490, 848, 1377, 2125, 3146, 4500, 6253, 8477, 11250, 14656, 18785, 23733, 29602, 36500, 44541, 53845, 64538, 76752, 90625, 106301, 123930, 143668, 165677, 190125, 217186, 247040, 279873, 315877, 355250, 398196, 444925
Offset: 1
Examples
a(5)=25 because M^5 = [1,0,0; 5,1,0; 5+10i, 5i, 1] and |5+10i|^2 = 125.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- César Eliud Lozada, Counting regions [Warning: Although the drawings here appear to be correct for n <= 5, the generalization to higher n fails - see Comment above and A332953. - _N. J. A. Sloane_, Mar 04 2020]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([1..40],n-> n^2*(n^2-2*n+5)/4); # Muniru A Asiru, Feb 22 2019
-
Magma
[n^2*(n^2-2*n+5)/4: n in [1..40]]; // G. C. Greubel, Feb 22 2019
-
Maple
b[1]:=1: b[2]:=2+I: b[3]:=3+3*I: for n from 4 to 45 do b[n]:=3*b[n-1]-3*b[n-2]+b[n-3] od: seq(abs(b[j])^2,j=1..45); with(linalg): M[1]:=matrix(3,3,[1,0,0,1,1,0,1,I,1]): for n from 2 to 45 do M[n]:=multiply(M[1],M[n-1]) od: seq(abs(M[j][3,1])^2,j=1..45); seq(sum((binomial(n,m))^2,m=1..2),n=1..37); # Zerinvary Lajos, Jun 19 2008 # alternative Maple program: a:= n-> abs((<<1|0|0>, <1|1|0>, <1|I|1>>^n)[3,1])^2: seq(a(n), n=1..40); # Alois P. Heinz, Mar 09 2020
-
Mathematica
Table[n^2(n^2-2n+5)/4,{n,40}] (* Vincenzo Librandi, Feb 14 2012 *)
-
PARI
vector(40, n, n^2*(n^2-2*n+5)/4) \\ G. C. Greubel, Feb 22 2019
-
Sage
[n^2*(n^2-2*n+5)/4 for n in (1..40)] # G. C. Greubel, Feb 22 2019
Formula
a(n) = |b(n)|^2, where b(n) = 3b(n-1) - 3b(n-2) + b(n-3) for n >= 4; b(1)=1, b(2)=2+i, b(3)=3+3i (the recurrence relation follows from the minimal polynomial t^3 - 3t^2 + 3t - 1 of the matrix M).
a(n) = n^2*(n^2 - 2*n + 5)/4. - T. D. Noe, Feb 09 2007
O.g.f.: x*(1 + 3*x^2 + 2*x^3)/(1-x)^5. - R. J. Mathar, Dec 05 2007
a(n) = binomial(n,2)^2 + n^2, n > 1. - Gary Detlefs, Nov 23 2011
E.g.f.: x*(4 +6*x +4*x^2 +x^3)*exp(x)/4. - G. C. Greubel, Feb 22 2019
Extensions
Edited by Emeric Deutsch, Dec 27 2006
Definition revised by N. J. A. Sloane, Mar 05 2020
Comments