cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125641 Square of the (3,1)-entry of the 3 X 3 matrix M^n, where M = [1,0,0; 1,1,0; 1,i,1].

Original entry on oeis.org

1, 5, 18, 52, 125, 261, 490, 848, 1377, 2125, 3146, 4500, 6253, 8477, 11250, 14656, 18785, 23733, 29602, 36500, 44541, 53845, 64538, 76752, 90625, 106301, 123930, 143668, 165677, 190125, 217186, 247040, 279873, 315877, 355250, 398196, 444925
Offset: 1

Views

Author

Gary W. Adamson, Nov 28 2006

Keywords

Comments

Conjecture [False!]: Draw the segments joining every lattice point on axis X with every lattice point on axis Y for 1 <= x <= n and 1 <= y <= n. The number of regions formed with these segments and axis X and Y is a(n). - César Eliud Lozada, Feb 14 2013
The above conjecture appears to be wrong. The number of regions formed by this construction is given in A332953, which differs from this sequence for n > 5. - Scott R. Shannon, Mar 04 2020

Examples

			a(5)=25 because M^5 = [1,0,0; 5,1,0; 5+10i, 5i, 1] and |5+10i|^2 = 125.
		

Crossrefs

Programs

  • GAP
    List([1..40],n-> n^2*(n^2-2*n+5)/4); # Muniru A Asiru, Feb 22 2019
    
  • Magma
    [n^2*(n^2-2*n+5)/4: n in [1..40]]; // G. C. Greubel, Feb 22 2019
    
  • Maple
    b[1]:=1: b[2]:=2+I: b[3]:=3+3*I: for n from 4 to 45 do b[n]:=3*b[n-1]-3*b[n-2]+b[n-3] od: seq(abs(b[j])^2,j=1..45);
    with(linalg): M[1]:=matrix(3,3,[1,0,0,1,1,0,1,I,1]): for n from 2 to 45 do M[n]:=multiply(M[1],M[n-1]) od: seq(abs(M[j][3,1])^2,j=1..45);
    seq(sum((binomial(n,m))^2,m=1..2),n=1..37); # Zerinvary Lajos, Jun 19 2008
    # alternative Maple program:
    a:= n-> abs((<<1|0|0>, <1|1|0>, <1|I|1>>^n)[3,1])^2:
    seq(a(n), n=1..40);  # Alois P. Heinz, Mar 09 2020
  • Mathematica
    Table[n^2(n^2-2n+5)/4,{n,40}] (* Vincenzo Librandi, Feb 14 2012 *)
  • PARI
    vector(40, n, n^2*(n^2-2*n+5)/4) \\ G. C. Greubel, Feb 22 2019
    
  • Sage
    [n^2*(n^2-2*n+5)/4 for n in (1..40)] # G. C. Greubel, Feb 22 2019

Formula

a(n) = |b(n)|^2, where b(n) = 3b(n-1) - 3b(n-2) + b(n-3) for n >= 4; b(1)=1, b(2)=2+i, b(3)=3+3i (the recurrence relation follows from the minimal polynomial t^3 - 3t^2 + 3t - 1 of the matrix M).
a(n) = n^2*(n^2 - 2*n + 5)/4. - T. D. Noe, Feb 09 2007
O.g.f.: x*(1 + 3*x^2 + 2*x^3)/(1-x)^5. - R. J. Mathar, Dec 05 2007
a(n) = binomial(n,2)^2 + n^2, n > 1. - Gary Detlefs, Nov 23 2011
E.g.f.: x*(4 +6*x +4*x^2 +x^3)*exp(x)/4. - G. C. Greubel, Feb 22 2019

Extensions

Edited by Emeric Deutsch, Dec 27 2006
Definition revised by N. J. A. Sloane, Mar 05 2020