cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A116993 a(n) is the least number having exactly n representations as a product of two palindromes.

Original entry on oeis.org

13, 1, 4, 44, 66, 484, 4444, 7326, 6666, 48884, 73326, 493284, 888888, 666666, 5426124, 4888884, 6672666, 7333326, 44888844, 73399326, 246888642, 67333266, 4073662593, 4893772884, 4533773244, 6800659866, 2715775062, 1481331852, 493777284, 740665926, 8147325186, 5431550124, 74807258526
Offset: 0

Views

Author

Giovanni Resta, Apr 02 2006

Keywords

Comments

a(20) <= 733333326; a(34) <= 666666666666; a(39) <= 4888888888884 and a(44) <= 7333333333326. - Farideh Firoozbakht, Dec 10 2006

Examples

			a(0)=13 since 13 is the smallest number that cannot be represented as a product of two palindromes.
a(5)=484 since 484 = 1*484 = 2*242 = 4*121 = 22*22 = 11*44.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=Length[Select[Divisors[n], #<=n^(1/2)&&FromDigits[ Reverse[IntegerDigits[ # ]]]==#&&FromDigits[Reverse[IntegerDigits [n/# ]]]==n/#&]]; a[n_]:=(For[m=1, f[m] != n, m++ ]; m); Do[Print[a[n]], {n, 0, 18}] (* Farideh Firoozbakht, Dec 10 2006 *)

Extensions

More terms from Farideh Firoozbakht, Dec 10 2006
a(19)-a(27) from Donovan Johnson, Aug 04 2009
More terms from David A. Corneth, Aug 10 2025

A152572 Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 5^(n - 1), T(n,k) = -5^(n - k - 1), 1 <= k <= n - 1.

Original entry on oeis.org

-1, 1, -1, 5, -1, -1, 25, -5, -1, -1, 125, -25, -5, -1, -1, 625, -125, -25, -5, -1, -1, 3125, -625, -125, -25, -5, -1, -1, 15625, -3125, -625, -125, -25, -5, -1, -1, 78125, -15625, -3125, -625, -125, -25, -5, -1, -1, 390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1
Offset: 0

Views

Author

Roger L. Bagula, Dec 08 2008

Keywords

Examples

			Triangle begins:
       -1;
        1,      -1;
        5,      -1,     -1;
       25,      -5,     -1,     -1;
      125,     -25,     -5,     -1,    -1;
      625,    -125,    -25,     -5,    -1,   -1;
     3125,    -625,   -125,    -25,    -5,   -1,   -1;
    15625,   -3125,   -625,   -125,   -25,   -5,   -1,  -1;
    78125,  -15625,  -3125,   -625,  -125,  -25,   -5,  -1, -1;
   390625,  -78125, -15625,  -3125,  -625, -125,  -25,  -5, -1, -1;
  1953125, -390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
      ...
		

Crossrefs

Row sums (except row 0): A125833.

Programs

  • Mathematica
    b[0] = {-1}; b[1] = {1, -1};
    b[n_] := b[n] = Join[{5^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
    Flatten[Table[b[n], {n, 0, 10}]]
  • Maxima
    T(n, k) := if k = n then -1 else if k = 0 then 5^(n - 1) else -5^(n - k - 1);
    create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */

Formula

From Franck Maminirina Ramaharo, Jan 08 2019: (Start)
G.f.: -(1 - 6*y + 2*x*y^2)/(1 - (5 + x)*y + 5*x*y^2).
E.g.f.: -(10 - 2*x - (5 - 2*x)*exp(5*y) + (20 - 5*x)*exp(x*y))/(25 - 5*x). (End)

Extensions

Edited by Franck Maminirina Ramaharo, Jan 08 2019

A125832 Numbers k which have exactly 14 representations as a product of two palindromes.

Original entry on oeis.org

5426124, 8139186, 20017998, 21999978, 26690664, 26888862, 29333304, 49821684, 73267326, 97689768, 98666568, 146534652, 147999852, 220197978, 271333062, 274019262, 320221902, 403696293, 471535064, 489372884, 516019504, 518221704
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 10 2006

Keywords

Examples

			26888862 is in the sequence since 26888862 =
 1*26888862 = 2*13444431 = 11*2444442 = 22*1222221 = 111*242242 = 121*222222 = 222*121121 =
 242*111111 = 1001*26862 = 1221*22022 = 1331*20202 = 2002*13431 = 2442*11011 = 2662*10101.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=Length[Select[Divisors[n],#<=n^(1/2)&&FromDigits[ Reverse[IntegerDigits[ # ]]]==#&&FromDigits[Reverse[IntegerDigits [n/# ]]]==n/#&]];Do[If[f[n]==14,Print[n]],{n,50000000}]

Extensions

a(9)-a(22) from Donovan Johnson, Aug 05 2009

A125834 Numbers that have exactly 15 representations as a product of two palindromes.

Original entry on oeis.org

4888884, 8896888, 13345332, 74732526, 100999899, 140732592, 179555376, 269130862, 295777482, 444888444, 734059326, 880968088, 978745768, 1032039008, 1183109928, 1321452132, 1399939992, 1548058512, 1614785172, 1886140256
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 11 2006

Keywords

Examples

			4888884 is in the sequence since 4888884 = 1*4888884 = 2*2444442 = 4*1222221 = 11*444444 = 22*222222 = 44*111111 = 111*44044 = 121*40404 = 222*22022 = 242*20202 = 444*11011 = 484*10101 = 1001*4884 = 1221*4004 = 2002*2442.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=Length[Select[Divisors[n],#<=n^(1/2)&&FromDigits[ Reverse[IntegerDigits[ # ]]]==#&&FromDigits[Reverse[IntegerDigits [n/# ]]]==n/#&]];Do[If[f[n]==15,Print[n]],{n,125000000}]

Extensions

a(6)-a(20) from Donovan Johnson, Aug 05 2009
Showing 1-4 of 4 results.