cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A036679 a(n) = n^n - n!.

Original entry on oeis.org

0, 0, 2, 21, 232, 3005, 45936, 818503, 16736896, 387057609, 9996371200, 285271753811, 8915621446656, 302868879571453, 11111919647266816, 437892582706491375, 18446723150919663616, 827239906198908668177, 39346401672922831847424, 1978419534015213180291979
Offset: 0

Views

Author

Keywords

Comments

a(n) = |non-injective functions [n]->[n]| = |non-surjective functions [n]->[n]|.
Fit a polynomial f of degree n-1 to the first n n-th powers of nonnegative integers. Then a(n) = f(n). - Franklin T. Adams-Watters, Dec 28 2006
n^n > n! for n >= 3. [Mitrinovic]

References

  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 193, 3.1.22.

Crossrefs

Cf. A126130, diagonal of A101030.

Programs

Formula

E.g.f.: 1/(1-T(x))-1/(1-x) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Dec 10 2012

A226805 P_n(n+1) where P_n(x) is the polynomial of degree n-1 which satisfies P_n(i) = i^i for i = 1,...,n.

Original entry on oeis.org

1, 7, 70, 877, 13316, 237799, 4885980, 113566121, 2946476764, 84417530491, 2647176188372, 90183424037293, 3316840864313484, 130985236211745959, 5528094465439087876, 248308899812296990033, 11827417687501017074876, 595470029978391175571923
Offset: 1

Views

Author

Keywords

Examples

			P_3(x) = 18 - 27*x + 10*x^2; a(3) = P_3(3+1) = 70.
		

Crossrefs

Programs

  • Mathematica
    P[n_][x_] = Sum[a[i]*x^i, {i, 0, n - 1}];ecu[n_] := Table[P[n][i] == i^i, {i, 1, n}];PP[n_][x_] := P[n][x] /. Solve[ecu[n]][[1]];Table[PP[i][i + 1], {i, 1, 22}]
    a[n_] := InterpolatingPolynomial[Table[{i, i^i}, {i, n}], n+1]; Array[a, 20] (* Giovanni Resta, Jun 18 2013 *)
  • PARI
    a(n)=subst(polinterpolate(vector(n,i,i^i)),'x,n+1) \\ Charles R Greathouse IV, Nov 19 2013

A301347 a(n) = n^(n-1) + (n-1)!.

Original entry on oeis.org

2, 3, 11, 70, 649, 7896, 118369, 2102192, 43087041, 1000362880, 25941053401, 743048287488, 23298564124081, 793721000274944, 29193013203681825, 1152922812281214976, 48661212798456756481, 2185911915426124627968, 104127356700284947260841, 5242880121645100408832000
Offset: 1

Views

Author

Seiichi Manyama, Mar 19 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A053042(n)/n.
a(n) = A000169(n) + A000142(n-1).

A359950 a(n) is the greatest prime factor of n^n - n!.

Original entry on oeis.org

2, 7, 29, 601, 29, 116929, 11887, 4778489, 82207, 296987, 2767, 464089, 36922117, 71722471217, 10219277051, 9406703479, 2040247819, 122450719, 1265072927, 18353142818474353, 21514105057, 46999724987, 29693667067, 5684341885088084044195811037649, 692132186353, 12114317049616531
Offset: 2

Views

Author

Sebastian F. Orellana, Jan 19 2023

Keywords

Examples

			a(5) = greatest prime factor of 5^5 - 5! = greatest prime factor of 3125 - 120 = greatest prime factor of 3005 = 3005/5 = 601.
		

Crossrefs

Programs

  • Mathematica
    Table[Max[First/@FactorInteger[n^n-n!]],{n,2,27}] (* Stefano Spezia, Jan 22 2023 *)
  • PARI
    a(n) = vecmax(factor(n^n - n!)[,1]); \\ Michel Marcus, Jan 22 2023

Formula

a(n) = A006530(A036679(n)) = A006530(n*A126130(n-1)).

Extensions

More terms from Michel Marcus, Jan 22 2023
Showing 1-4 of 4 results.