A055775
a(n) = floor(n^n / n!).
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 64, 163, 416, 1067, 2755, 7147, 18613, 48638, 127463, 334864, 881657, 2325750, 6145596, 16263866, 43099804, 114356611, 303761260, 807692034, 2149632061, 5726042115, 15264691107, 40722913454, 108713644516
Offset: 0
a(5)=26 since 5^5=3125, 5!=120, 3125/120=26.0416666...
A061711
a(n) = n^n * n!.
Original entry on oeis.org
1, 1, 8, 162, 6144, 375000, 33592320, 4150656720, 676457349120, 140587147048320, 36288000000000000, 11388728893445164800, 4270826380475341209600, 1886009588552176549862400, 968725766854884321342259200, 572622616354851562500000000000
Offset: 0
Lorenzo Fortunato (fortunat(AT)pd.infn.it), Jun 19 2001
a(1) = 1^1 * 1! = 1;
a(2) = 2^2 * 2! = 8;
a(3) = 3^3 * 3! = 162.
A053042
a(n) = n^n + n!.
Original entry on oeis.org
2, 6, 33, 280, 3245, 47376, 828583, 16817536, 387783369, 10003628800, 285351587411, 8916579449856, 302881333613053, 11112094003849216, 437895198055227375, 18446764996499439616, 827240617573764860177, 39346414477670243303424
Offset: 1
A101030
Triangle read by rows: T(n,k) = number of functions from an n-element set into but not onto a k-element set.
Original entry on oeis.org
0, 0, 2, 0, 2, 21, 0, 2, 45, 232, 0, 2, 93, 784, 3005, 0, 2, 189, 2536, 13825, 45936, 0, 2, 381, 7984, 61325, 264816, 818503, 0, 2, 765, 24712, 264625, 1488096, 5623681, 16736896, 0, 2, 1533, 75664, 1119005, 8172576, 38025127, 132766208, 387057609, 0
Offset: 1
T(3,3) = #(functions into) - #(functions onto) = 3^3 - 6 = 21
Triangle T(n,k) begins:
0,
0, 2;
0, 2, 21;
0, 2, 45, 232;
0, 2, 93, 784, 3005;
0, 2, 189, 2536, 13825, 45936;
0, 2, 381, 7984, 61325, 264816, 818503;
0, 2, 765, 24712, 264625, 1488096, 5623681, 16736896;
0, 2, 1533, 75664, 1119005, 8172576, 38025127, 132766208, 387057609;
-
T:=(n, k)->sum((-1)^(j-1)*binomial(k, j)*(k-j)^n, j=1..k);
seq(seq(T(n, k), k=1..n), n=1..15); # Dennis P. Walsh, Apr 13 2016
A344112
Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not functions.
Original entry on oeis.org
1, 3, 12, 7, 56, 485, 15, 240, 4015, 65280, 31, 992, 32525, 1047552, 33551307, 63, 4032, 261415, 16773120, 1073726199, 68719430080, 127, 16256, 2094965, 268419072, 34359660243, 4398046231168, 562949952597769, 255, 65280, 16770655, 4294901760, 1099511237151
Offset: 1
T(2,2) = (number of relations) - (number of functions) = 2^4 - 4 = 12.
Triangle T(n,k) begins:
1;
3, 12;
7, 56, 485;
15, 240, 4015, 65280;
31, 992, 32525, 1047552, 33551307;
-
Column[Table[2^(n*k) - k^n, {n, 10}, {k, n}], Center]
A344113
a(n) = 2^(n^2) - n^n.
Original entry on oeis.org
1, 12, 485, 65280, 33551307, 68719430080, 562949952597769, 18446744073692774400, 2417851639229257961991863, 1267650600228229401486703205376, 2658455991569831745807613835249018541, 22300745198530623141535718272639445405532160
Offset: 1
a(1) = 2^(1^2) - 1^1 = 1.
a(2) = 2^(2^2) - 2^2 = 12.
a(3) = 2^(3^2) - 3^3 = 485.
A344114
a(n) = 2^(n^2) - n!.
Original entry on oeis.org
1, 14, 506, 65512, 33554312, 68719476016, 562949953416272, 18446744073709511296, 2417851639229258349049472, 1267650600228229401496699576576, 2658455991569831745807614120520772352, 22300745198530623141535718272648361026978816, 748288838313422294120286634350736906063831234982912
Offset: 1
a(1) = 2^(1^2) - 1! = 1;
a(2) = 2^(2^2) - 2! = 14;
a(3) = 2^(3^2) - 3! = 506.
A162603
Primes of the form k^k - k! + 1.
Original entry on oeis.org
3, 233, 9996371201, 11111919647266817
Offset: 1
2^2-2!+1 = 4-2+1 = 3, 4^4-4!+1 = 256-24+1 = 233, ...
-
f[n_]:=n^n-n!+1; lst={};Do[p=f[n];If[PrimeQ[p],AppendTo[lst,p]],{n,2*5!}];lst
Select[Table[n^n-n!+1,{n,30}],PrimeQ] (* Harvey P. Dale, Jun 03 2014 *)
A344115
Triangle read by rows: T(n,k) is the number of relations from an n-element set to a k-element set that are not one-to-one functions.
Original entry on oeis.org
1, 2, 14, 5, 58, 506, 12, 244, 4072, 65512, 27, 1004, 32708, 1048456, 33554312, 58, 4066, 262024, 16776856, 1073741104, 68719476016, 121, 16342, 2096942, 268434616, 34359735848, 4398046506064, 562949953416272, 248, 65480, 16776880, 4294965616, 1099511621056
Offset: 1
For T(2,2): the number of relations is 2^4 and the number of one-to-one functions is 2, so 2^4 - 2 = 14 and thus T(2,2) = 14.
Triangle T(n,k) begins:
1;
2, 14;
5, 58, 506;
12, 244, 4072, 65512;
27, 1004, 32708, 1048456, 33554312;
-
Table[2^(n*k) - k!/(k - n)!, {k, 10}, {n, k}] // Flatten
A057157
Number of non-invertible functions from {0,1}^n to {0,1}^n.
Original entry on oeis.org
0, 2, 232, 16736896, 18446723150919663616, 1461501637330639787366751139186115801643772542976
Offset: 0
Showing 1-10 of 20 results.
Comments