cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A055775 a(n) = floor(n^n / n!).

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 64, 163, 416, 1067, 2755, 7147, 18613, 48638, 127463, 334864, 881657, 2325750, 6145596, 16263866, 43099804, 114356611, 303761260, 807692034, 2149632061, 5726042115, 15264691107, 40722913454, 108713644516
Offset: 0

Views

Author

Henry Bottomley, Jul 12 2000

Keywords

Comments

Stirling's approximation for n! suggests that this should be about e^n/sqrt(pi*2n). Bill Gosper has noted that e^n/sqrt(pi*(2n+1/3)) is significantly better.
n^n/n! = A001142(n)/A001142(n-1), where A001142(n) is product{k=0 to n} C(n,k) (where C() is a binomial coefficient). - Leroy Quet, May 01 2004
There are n^n distinct functions from [n] to [n] or sequences on n symbols of length n, the number of those sequences having n distinct symbols is n!. So the probability P(n) of bijection is n!/n^n. The expected value of the number of functions that we pick until we found a bijection is the reciprocal of P(n), or n^n/n!. - Washington Bomfim, Mar 05 2012

Examples

			a(5)=26 since 5^5=3125, 5!=120, 3125/120=26.0416666...
		

Crossrefs

Programs

Formula

a(n) = floor(A000312(n)/A000142(n)).

Extensions

More terms from James Sellers, Jul 13 2000

A061711 a(n) = n^n * n!.

Original entry on oeis.org

1, 1, 8, 162, 6144, 375000, 33592320, 4150656720, 676457349120, 140587147048320, 36288000000000000, 11388728893445164800, 4270826380475341209600, 1886009588552176549862400, 968725766854884321342259200, 572622616354851562500000000000
Offset: 0

Views

Author

Lorenzo Fortunato (fortunat(AT)pd.infn.it), Jun 19 2001

Keywords

Comments

a(n) is the product of first n terms of an arithmetic progression with first term n and common difference n. E.g. a(3) = 3*6*9 = 162. - Amarnath Murthy, Sep 20 2003
Product of the entries in the last column of an n X n square array whose elements are the numbers 1..n^2 listed in increasing order by rows. - Wesley Ivan Hurt, Mar 31 2025

Examples

			a(1) = 1^1 * 1! = 1;
a(2) = 2^2 * 2! = 8;
a(3) = 3^3 * 3! = 162.
		

Crossrefs

Main diagonal of A131182.
Cf. A336765.

Programs

  • Magma
    [Factorial(n)*n^n: n in [0..30]]; // G. C. Greubel, Nov 29 2022
  • Mathematica
    Table[If[n == 0, 1, n^n] * n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 08 2018 *)
  • PARI
    a(n) = n!*n^n; \\ Harry J. Smith, Jul 26 2009
    
  • Python
    from math import factorial
    def A061711(n): return factorial(n)*n**n # Chai Wah Wu, Sep 03 2022
    

Formula

E.g.f.: sinh(n*x)^n. - Vaclav Kotesovec, Nov 05 2014
a(n) = [x^n] 1/(1 - n*x/(1 - n*x/(1 - 2*n*x/(1 - 2*n*x/(1 - 3*n*x/(1 - 3*n*x/(1 - ...))))))), a continued fraction. - Ilya Gutkovskiy, Sep 20 2017
Sum_{n>=1} 1/a(n) = A336765. - Amiram Eldar, Nov 20 2020
a(n) ~ exp(-n)*n^(2*n)*sqrt(2*n*Pi). - Peter Luschny, Jan 10 2022

A354888 a(n) = n! * Sum_{d|n} d^d / d!.

Original entry on oeis.org

1, 6, 33, 328, 3245, 52056, 828583, 17328256, 389416329, 10105386400, 285351587411, 8955841614336, 302881333613053, 11126513414294656, 437935136609883375, 18455736024587862016, 827240617573764860177, 39353706314004951028224
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^#/#! &]; Array[a, 18] (* Amiram Eldar, Jun 10 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^d/d!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (k*x)^k/(k!*(1-x^k)))))

Formula

E.g.f.: Sum_{k>0} (k * x)^k/(k! * (1 - x^k)).
If p is prime, a(p) = p^p + p! = A053042(p).

A354890 a(n) = n! * Sum_{d|n} d^n / d!.

Original entry on oeis.org

1, 6, 33, 472, 3245, 157896, 828583, 132078976, 1578211209, 307174074400, 285351587411, 1835340563252736, 302881333613053, 11743240652094910336, 336123967242674523375, 149825956013958069846016, 827240617573764860177, 3551697093896307129060647424
Offset: 1

Views

Author

Seiichi Manyama, Jun 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, #^n/#! &]; Array[a, 18] (* Amiram Eldar, Jun 10 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, d^n/d!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (k*x)^k/(k!*(1-(k*x)^k)))))

Formula

E.g.f.: Sum_{k>0} (k * x)^k/(k! * (1 - (k * x)^k)).
If p is prime, a(p) = p^p + p! = A053042(p).

A109663 Numbers k such that the sum of the digits of (k^k + k!) is divisible by k.

Original entry on oeis.org

1, 2, 3, 9, 15, 18, 27, 36, 51, 81, 93, 169, 181, 348, 444, 504, 528, 1881, 2031, 9843, 16479, 16685, 45435, 129056, 138510, 214008, 358326
Offset: 1

Views

Author

Ryan Propper, Aug 06 2005

Keywords

Comments

The quotients are 2, 3, 2, 6, 6, 5, 8, 7, 6, 9, 9, 10, 10, 12, 12, 12, 12, 15, 15, 18, 19, 19, 21, 23, 22, 24, 25.
No more terms < 500000. - Lars Blomberg, Jul 05 2011

Examples

			The digits of 1881^1881 + 1881! sum to 28215 and 28215 is divisible by 1881, so 1881 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Do[s = n^n + n!; k = Plus @@ IntegerDigits[s]; If[Mod[k, n] == 0, Print[n]], {n, 1, 10000}]
    Select[Range[360000],Divisible[Total[IntegerDigits[#^#+#!]],#]&] (* Harvey P. Dale, Dec 27 2018 *)

Extensions

a(21)-a(27) from Lars Blomberg, Jul 05 2011

A301347 a(n) = n^(n-1) + (n-1)!.

Original entry on oeis.org

2, 3, 11, 70, 649, 7896, 118369, 2102192, 43087041, 1000362880, 25941053401, 743048287488, 23298564124081, 793721000274944, 29193013203681825, 1152922812281214976, 48661212798456756481, 2185911915426124627968, 104127356700284947260841, 5242880121645100408832000
Offset: 1

Views

Author

Seiichi Manyama, Mar 19 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A053042(n)/n.
a(n) = A000169(n) + A000142(n-1).
Showing 1-6 of 6 results.