A055775
a(n) = floor(n^n / n!).
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 64, 163, 416, 1067, 2755, 7147, 18613, 48638, 127463, 334864, 881657, 2325750, 6145596, 16263866, 43099804, 114356611, 303761260, 807692034, 2149632061, 5726042115, 15264691107, 40722913454, 108713644516
Offset: 0
a(5)=26 since 5^5=3125, 5!=120, 3125/120=26.0416666...
A061711
a(n) = n^n * n!.
Original entry on oeis.org
1, 1, 8, 162, 6144, 375000, 33592320, 4150656720, 676457349120, 140587147048320, 36288000000000000, 11388728893445164800, 4270826380475341209600, 1886009588552176549862400, 968725766854884321342259200, 572622616354851562500000000000
Offset: 0
Lorenzo Fortunato (fortunat(AT)pd.infn.it), Jun 19 2001
a(1) = 1^1 * 1! = 1;
a(2) = 2^2 * 2! = 8;
a(3) = 3^3 * 3! = 162.
A354888
a(n) = n! * Sum_{d|n} d^d / d!.
Original entry on oeis.org
1, 6, 33, 328, 3245, 52056, 828583, 17328256, 389416329, 10105386400, 285351587411, 8955841614336, 302881333613053, 11126513414294656, 437935136609883375, 18455736024587862016, 827240617573764860177, 39353706314004951028224
Offset: 1
-
a[n_] := n! * DivisorSum[n, #^#/#! &]; Array[a, 18] (* Amiram Eldar, Jun 10 2022 *)
-
a(n) = n!*sumdiv(n, d, d^d/d!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (k*x)^k/(k!*(1-x^k)))))
A354890
a(n) = n! * Sum_{d|n} d^n / d!.
Original entry on oeis.org
1, 6, 33, 472, 3245, 157896, 828583, 132078976, 1578211209, 307174074400, 285351587411, 1835340563252736, 302881333613053, 11743240652094910336, 336123967242674523375, 149825956013958069846016, 827240617573764860177, 3551697093896307129060647424
Offset: 1
-
a[n_] := n! * DivisorSum[n, #^n/#! &]; Array[a, 18] (* Amiram Eldar, Jun 10 2022 *)
-
a(n) = n!*sumdiv(n, d, d^n/d!);
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (k*x)^k/(k!*(1-(k*x)^k)))))
A109663
Numbers k such that the sum of the digits of (k^k + k!) is divisible by k.
Original entry on oeis.org
1, 2, 3, 9, 15, 18, 27, 36, 51, 81, 93, 169, 181, 348, 444, 504, 528, 1881, 2031, 9843, 16479, 16685, 45435, 129056, 138510, 214008, 358326
Offset: 1
The digits of 1881^1881 + 1881! sum to 28215 and 28215 is divisible by 1881, so 1881 is in the sequence.
-
Do[s = n^n + n!; k = Plus @@ IntegerDigits[s]; If[Mod[k, n] == 0, Print[n]], {n, 1, 10000}]
Select[Range[360000],Divisible[Total[IntegerDigits[#^#+#!]],#]&] (* Harvey P. Dale, Dec 27 2018 *)
A301347
a(n) = n^(n-1) + (n-1)!.
Original entry on oeis.org
2, 3, 11, 70, 649, 7896, 118369, 2102192, 43087041, 1000362880, 25941053401, 743048287488, 23298564124081, 793721000274944, 29193013203681825, 1152922812281214976, 48661212798456756481, 2185911915426124627968, 104127356700284947260841, 5242880121645100408832000
Offset: 1
Showing 1-6 of 6 results.
Comments