A055775
a(n) = floor(n^n / n!).
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 64, 163, 416, 1067, 2755, 7147, 18613, 48638, 127463, 334864, 881657, 2325750, 6145596, 16263866, 43099804, 114356611, 303761260, 807692034, 2149632061, 5726042115, 15264691107, 40722913454, 108713644516
Offset: 0
a(5)=26 since 5^5=3125, 5!=120, 3125/120=26.0416666...
A303489
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k).
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 1, 1, 8, 60, 1, 1, 10, 105, 840, 1, 1, 12, 162, 1920, 15120, 1, 1, 14, 231, 3640, 45045, 332640, 1, 1, 16, 312, 6144, 104720, 1290240, 8648640, 1, 1, 18, 405, 9576, 208845, 3674160, 43648605, 259459200, 1, 1, 20, 510, 14080, 375000, 8648640, 152152000, 1703116800, 8821612800
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
6, 8, 10, 12, 14, 16, ...
60, 105, 162, 231, 312, 405, ...
840, 1920, 3640, 6144, 9576, 14080, ...
15120, 45045, 104720, 208845, 375000, 623645, ...
=========================================================
A(1,1) = 1;
A(2,1) = 2*3 = 6;
A(3,1) = 3*4*5 = 60;
A(4,1) = 4*5*6*7 = 840;
A(5,1) = 5*6*7*8*9 = 15120, etc.
...
A(1,2) = 1;
A(2,2) = 2*4 = 8;
A(3,2) = 3*5*7 = 105;
A(4,2) = 4*6*8*10 = 1920;
A(5,2) = 5*7*9*11*13 = 45045, etc.
...
A(1,3) = 1;
A(2,3) = 2*5 = 10;
A(3,3) = 3*6*9 = 162;
A(4,3) = 4*7*10*13 = 3640;
A(5,3) = 5*8*11*14*17 = 104720, etc.
...
-
Table[Function[k, n! SeriesCoefficient[1/(1 - k x)^(n/k), {x, 0, n}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, Product[k i + n, {i, 0, n - 1}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
Table[Function[k, k^n Pochhammer[n/k, n]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
A291699
a(n) = n^n*(2*n)!/(n!*(n + 1)!).
Original entry on oeis.org
1, 1, 8, 135, 3584, 131250, 6158592, 353299947, 23991418880, 1883638417518, 167960000000000, 16772331868538246, 1854655886442627072, 225005916687384753700, 29718395534545380311040, 4245313393689422607421875, 652233889532678001886494720, 107247390031799133661006687830
Offset: 0
-
seq(n^n*(2*n)!/n!/(n+1)!, n=0..50); # Robert Israel, Aug 30 2017
-
Join[{1}, Table[n^n (2 n)!/(n! (n + 1)!), {n, 1, 17}]]
Table[SeriesCoefficient[2/(1 + Sqrt[1 - 4 n x]), {x, 0, n}], {n, 0, 17}]
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
-
a(n)=binomial(2*n,n)/(n+1)*n^n \\ Charles R Greathouse IV, Oct 23 2023
A152684
a(n) is the number of top-down sequences (F_1, F_2, ..., F_n) whereas each F_i is a labeled forest on n nodes, containing i directed rooted trees. F_(i+1) is proper subset of F_i.
Original entry on oeis.org
1, 2, 18, 384, 15000, 933120, 84707280, 10569646080, 1735643790720, 362880000000000, 94121726392108800, 29658516531078758400, 11159820050604594969600, 4942478402320838374195200, 2544989406021562500000000000, 1507645899890367707813511168000
Offset: 1
a(1) = 1^(1-2)*(1!) = 1.
a(2) = 2^(2-2)*(2!) = 2.
a(3) = 3^(3-2)*(3!) = 18.
- Miklos Bona, Introduction to Enumerative Combinatorics, McGraw Hill 2007, Page 276.
-
[Factorial(n-1)*n^(n-1): n in [1..20]]; // G. C. Greubel, Nov 28 2022
-
a:= proc(n) option remember; `if`(n=1, 1,
a(n-1)*(n/(n-1))^(n-3)*n^2)
end:
seq(a(n), n=1..20); # Alois P. Heinz, May 16 2013
-
Table[n^(n - 1) (n - 1)!, {n, 1, 16}] (* Geoffrey Critzer, May 10 2013 *)
-
[factorial(n-1)*n^(n-1) for n in range(1,21)] # G. C. Greubel, Nov 28 2022
A330260
a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.
Original entry on oeis.org
1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0
-
[Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
-
Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
-
a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
A131182
Table T(n,k) = n!*k^n, read by upwards antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 8, 3, 1, 0, 24, 48, 18, 4, 1, 0, 120, 384, 162, 32, 5, 1, 0, 720, 3840, 1944, 384, 50, 6, 1, 0, 5040, 46080, 29160, 6144, 750, 72, 7, 1, 0, 40320, 645120, 524880, 122880, 15000, 1296, 98, 8, 1, 0, 362880, 10321920, 11022480, 2949120, 375000, 31104, 2058, 128, 9, 1
Offset: 0
The (inverted) table begins:
k=0: 1, 0, 0, 0, 0, 0, ... (A000007)
k=1: 1, 1, 2, 6, 24, 120, ... (A000142)
k=2: 1, 2, 8, 48, 384, 3840, ... (A000165)
k=3: 1, 3, 18, 162, 1944, 29160, ... (A032031)
k=4: 1, 4, 32, 384, 6144, 122880, ... (A047053)
k=5: 1, 5, 50, 750, 15000, 375000, ... (A052562)
k=6: 1, 6, 72, 1296, 31104, 933120, ... (A047058)
k=7: 1, 7, 98, 2058, 57624, 2016840, ... (A051188)
k=8: 1, 8, 128, 3072, 98304, 3932160, ... (A051189)
k=9: 1, 9, 162, 4374, 157464, 7085880, ... (A051232)
Main diagonal is 1, 1, 8, 162, 6144, 375000, ... (A061711).
-
T:= (n,k)-> n!*k^n:
seq(seq(T(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 06 2019
-
from math import factorial
def A131182_T(n, k): # compute T(n, k)
return factorial(n)*k**n # Chai Wah Wu, Sep 01 2022
A137268
Triangle T(n, k) = k! * (k+1)^(n-k), read by rows.
Original entry on oeis.org
1, 2, 2, 4, 6, 6, 8, 18, 24, 24, 16, 54, 96, 120, 120, 32, 162, 384, 600, 720, 720, 64, 486, 1536, 3000, 4320, 5040, 5040, 128, 1458, 6144, 15000, 25920, 35280, 40320, 40320, 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880
Offset: 1
Triangle begins as:
1;
2, 2;
4, 6, 6;
8, 18, 24, 24;
16, 54, 96, 120, 120;
32, 162, 384, 600, 720, 720;
64, 486, 1536, 3000, 4320, 5040, 5040;
128, 1458, 6144, 15000, 25920, 35280, 40320, 40320;
256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880;
512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800, 3628800;
-
[Factorial(k)*(k+1)^(n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 28 2022
-
T[n_, k_]:= k!*(k+1)^(n-k);
Table[T[n, k], {n, 12}, {k, n}]//Flatten
-
def A137268(n,k): return factorial(k)*(k+1)^(n-k)
flatten([[A137268(n,k) for k in range(1,n+1)] for n in range(14)]) # G. C. Greubel, Nov 28 2022
A231601
Number of permutations of [n] avoiding ascents from odd to even numbers.
Original entry on oeis.org
1, 1, 1, 4, 8, 54, 162, 1536, 6144, 75000, 375000, 5598720, 33592320, 592950960, 4150656720, 84557168640, 676457349120, 15620794116480, 140587147048320, 3628800000000000, 36288000000000000, 1035338990313196800, 11388728893445164800, 355902198372945100800
Offset: 0
a(0) = 1: ().
a(1) = 1: 1.
a(2) = 1: 21.
a(3) = 4: 132, 213, 231, 321.
a(4) = 8: 1324, 2413, 2431, 3241, 4132, 4213, 4231, 4321.
a(5) = 54: 13245, 13254, 13524, ..., 54213, 54231, 54321.
a(6) = 162: 132465, 132546, 132645, ..., 654213, 654231, 654321.
Bisection gives:
A061711 (even part).
A062871
a(n) is the integer part of the geometric mean of n! and n^n.
Original entry on oeis.org
1, 1, 2, 12, 78, 612, 5795, 64425, 822470, 11856945, 190494094, 3374719083, 65351559893, 1373320643022, 31124359701926, 756718320351008, 19645797269948963, 542437979097898912, 15871685747774947592
Offset: 0
-
Floor[Sqrt[n!*n^n]]
-
a(n)={sqrtint(n! * n^n)} \\ Harry J. Smith, Aug 12 2009
-
from math import isqrt, factorial
def A062871(n): return isqrt(factorial(n)*n**n) # Chai Wah Wu, Jun 19 2024
A274844
The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.
Original entry on oeis.org
1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
- Richard P. Feynman, QED, The strange theory of light and matter, 1985.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
- Wikipedia, Feynman diagram
-
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
-
nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
Showing 1-10 of 22 results.
Comments