cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126348 Limit of reversed rows of triangle A126347, in which row sums equal Bell numbers (A000110).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 20, 33, 53, 84, 131, 202, 308, 465, 695, 1030, 1514, 2209, 3201, 4609, 6596, 9386, 13284, 18705, 26211, 36561, 50776, 70226, 96742, 132765, 181540, 247369, 335940, 454756, 613689, 825698, 1107755, 1482038, 1977465, 2631664
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2006

Keywords

Comments

In triangle A126347, row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).
Row sums of A253830. a(n) equals the number of colored compositions of n, as defined in A253830, whose associated color partition has distinct parts. An example is given below. - Peter Bala, Jan 20 2015

Examples

			a(5) = 12: The colored compositions (defined in A253830) of 5 whose color partitions have distinct parts are
5(c1), 5(c2), 5(c3), 5(c4), 5(c5),
1(c1) + 4(c2), 1(c1) + 4(c3), 1(c1) + 4(c4),
3(c1) + 2(c2),
2(c1) + 3(c2), 2(c1) + 3(c3), 2(c2) + 3(c3). - _Peter Bala_, Jan 20 2015
		

Crossrefs

Cf. A126347, A126349; factorial variant: A126471. A253830, A307599, A307601, A307602.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x + x^k)/(1 - x), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2019 *)
  • PARI
    {B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))}
    {a(n)=Vec(B(n+1,'q)+O('q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}
    
  • PARI
    {a(n) = local(t); if( n<0, 0, t = 1; polcoeff( sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t * x^k / (1 - x) / (1 - x^k) + x * O(x^n), 1), n))} /* Michael Somos, Aug 17 2008 */

Formula

1 + Sum_{k>0} x^(k * (k + 1) / 2) / ((1 - x)^k * (1 - x) * (1 - x^2) ... (1 - x^k)). - Michael Somos, Aug 17 2008
G.f.: Product_{k>0} (1+x^k/(1-x)). - Vladeta Jovovic, Oct 05 2008
G.f.: exp(Sum_{k>=1} x^k * Sum_{d|k} (-1)^(d+1)/(d*(1 - x)^d)). - Ilya Gutkovskiy, Apr 19 2019