cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A126024 Number of subsets of {1,2,3,...,n} whose sum is a square integer (including the empty subset).

Original entry on oeis.org

1, 2, 2, 3, 5, 7, 12, 20, 34, 60, 106, 190, 346, 639, 1183, 2204, 4129, 7758, 14642, 27728, 52648, 100236, 191294, 365827, 700975, 1345561, 2587057, 4981567, 9605777, 18546389, 35851756, 69382558, 134414736, 260658770, 505941852, 982896850
Offset: 0

Views

Author

John W. Layman, Feb 27 2007

Keywords

Examples

			The subsets of {1,2,3,4,5} that sum to a square are {}, {1}, {1,3}, {4}, {2,3,4}, {1,3,5} and {4,5}. Thus a(5)=7.
		

Crossrefs

Cf. A181522. - Reinhard Zumkeller, Oct 27 2010
Row sums of A281871.

Programs

  • Haskell
    import Data.List (subsequences)
    a126024 = length . filter ((== 1) . a010052 . sum) .
                              subsequences . enumFromTo 1
    -- Reinhard Zumkeller, Feb 22 2012, Oct 27 2010
  • Maple
    b:= proc(n, i) option remember; (m->
          `if`(n=0 or n=m, 1, `if`(n<0 or n>m, 0, b(n, i-1)+
          `if`(i>n, 0, b(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+
          add(b(j^2-n, n-1), j=isqrt(n)..isqrt(n*(n+1)/2)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 02 2017
  • Mathematica
    g[n_] := Block[{p = Product[1 + z^i, {i, n}]},Sum[Boole[IntegerQ[Sqrt[k]]]*Coefficient[p, z, k], {k, 0, n*(n + 1)/2}]];Array[g, 35] (* Ray Chandler, Mar 05 2007 *)

Extensions

Extended by Ray Chandler, Mar 05 2007
a(0)=1 prepended by Alois P. Heinz, Jan 30 2017

A282516 Number T(n,k) of k-element subsets of [n] having a prime element sum; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 2, 4, 1, 0, 0, 3, 5, 2, 2, 0, 0, 3, 7, 6, 4, 2, 0, 0, 4, 9, 10, 11, 7, 1, 0, 0, 4, 11, 18, 21, 13, 7, 2, 0, 0, 4, 14, 26, 34, 31, 20, 7, 3, 0, 0, 4, 18, 37, 53, 59, 51, 32, 11, 2, 0, 0, 5, 21, 47, 82, 110, 117, 85, 35, 12, 2, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2017

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  0, 0;
  0, 1,  1;
  0, 2,  2,  0;
  0, 2,  4,  1,  0;
  0, 3,  5,  2,  2,   0;
  0, 3,  7,  6,  4,   2,   0;
  0, 4,  9, 10, 11,   7,   1,  0;
  0, 4, 11, 18, 21,  13,   7,  2,  0;
  0, 4, 14, 26, 34,  31,  20,  7,  3,  0;
  0, 4, 18, 37, 53,  59,  51, 32, 11,  2, 0;
  0, 5, 21, 47, 82, 110, 117, 85, 35, 12, 2, 0;
  ...
		

Crossrefs

Row sums give A127542.
Main diagonal gives A185012.
First lower diagonal gives A282518.
T(2n,n) gives A282517.

Programs

  • Maple
    b:= proc(n, s) option remember; expand(`if`(n=0,
          `if`(isprime(s), 1, 0), b(n-1, s)+x*b(n-1, s+n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..16);
  • Mathematica
    b[n_, s_] := b[n, s] = Expand[If[n==0, If[PrimeQ[s], 1, 0], b[n-1, s] + x*b[n-1, s+n]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
    Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Mar 21 2017, translated from Maple *)

A309160 Number of nonempty subsets of [n] whose elements have a prime average.

Original entry on oeis.org

0, 1, 4, 6, 11, 15, 22, 40, 72, 118, 199, 355, 604, 920, 1306, 1906, 3281, 6985, 16446, 38034, 82490, 168076, 325935, 604213, 1068941, 1815745, 3038319, 5246725, 9796132, 19966752, 42918987, 92984247, 197027405, 402932711, 792381923, 1499918753, 2746078246
Offset: 1

Views

Author

Ivan N. Ianakiev, Jul 15 2019

Keywords

Examples

			a(3) = 4 because 4 of the subsets of [3], namely {2}, {3}, {1,3}, {1,2,3}, have prime averages.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, s, c) option remember; `if`(n=0,
          `if`(c>0 and denom(s)=1 and isprime(s), 1, 0),
           b(n-1, s, c)+b(n-1, (s*c+n)/(c+1), c+1))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 15 2019
  • Mathematica
    a[n_]:=Length[Select[Subsets[Range[n]],PrimeQ[Mean[#]]&]]; a/@Range[25]
  • Python
    from sympy import isprime
    from functools import lru_cache
    def cond(s, c): q, r = divmod(s, c); return r == 0 and isprime(q)
    @lru_cache(maxsize=None)
    def b(n, s, c):
        if n == 0: return int (c > 0 and cond(s, c))
        return b(n-1, s, c) + b(n-1, s+n, c+1)
    a = lambda n: b(n, 0, 0)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 25 2022

Formula

a(n) < A051293(n).

Extensions

a(26)-a(37) from Alois P. Heinz, Jul 15 2019

A126111 Number of subsets of {1,2,3,...,n} whose sum is a cube.

Original entry on oeis.org

2, 2, 2, 3, 5, 6, 8, 15, 29, 48, 71, 112, 216, 445, 849, 1459, 2403, 4239, 8343, 17049, 33416, 61192, 107290, 190803, 361136, 722568, 1457638, 2847209, 5322619, 9679593, 17715193, 33626815, 66430582, 133432610, 264832126, 511136916, 960634698, 1786150886
Offset: 1

Views

Author

Zak Seidov, Mar 05 2007

Keywords

Examples

			There are five subsets of {1,2,3,4,5} that sum to a cube: {}, {1},{3,5}, {1,2,5} and {1,3,4}. Thus a(5)=5.
		

Crossrefs

Cf. number of subsets of {1,2,3,...,n} whose sum is a square/prime in A126024, A127542.

Programs

  • Mathematica
    g[n_] := Block[{p = Product[1 + z^i, {i, n}]},Sum[Boole[IntegerQ[k^(1/3)]]*Coefficient[p, z, k], {k, 0, n*(n + 1)/2}]];Array[g, 37] (* Ray Chandler, Mar 07 2007 *)

Extensions

Extended by Ray Chandler, Mar 07 2007
More terms from Alois P. Heinz, Jan 18 2014

A181522 Number of subsets of {1,2,...,n} whose sum is semiprime (cf. A001358, A064911).

Original entry on oeis.org

0, 0, 2, 6, 13, 25, 47, 92, 184, 367, 721, 1416, 2769, 5407, 10662, 21135, 41866, 83220, 166617, 334852, 670725, 1334868, 2650263, 5280475, 10567613, 21145411, 42103939, 83382359, 164843079, 326791838, 650995628, 1301718424, 2605360702, 5205671338, 10369588530
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 27 2010

Keywords

Examples

			a(4) = #{{1,3}, {4}, {1,2,3}, {2,4}, {2,3,4}, {1,2,3,4}} = 6.
		

Crossrefs

Programs

  • Haskell
    import Data.List (subsequences)
    a181522 = length . filter ((== 1) . a064911 . sum) .
                              subsequences . enumFromTo 1
    -- Reinhard Zumkeller, Feb 22 2012, Oct 27 2010

A339507 Number of subsets of {1..n} whose sum is a decimal palindrome.

Original entry on oeis.org

1, 2, 4, 8, 15, 24, 32, 41, 55, 79, 126, 220, 406, 778, 1524, 3057, 6310, 13211, 27500, 56246, 113003, 224220, 442106, 870323, 1715503, 3391092, 6726084, 13382357, 26686192, 53286329, 106469764, 212803832, 425434124, 850676115, 1701169724, 3402169203, 6804150711, 13608072837, 27215890383, 54431527170
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2020

Keywords

Examples

			a(5) = 24 subsets: {}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5} and {1, 2, 3, 5}.
		

Crossrefs

Programs

  • Python
    from itertools import combinations
    def a(n):
        ans = 0
        for r in range(n+1):
            for s in combinations(range(1,n+1),r):
                strss = str(sum(s))
                ans += strss==strss[::-1]
        return ans
    print([a(n) for n in range(21)]) # Michael S. Branicky, Dec 07 2020
    
  • Python
    from functools import lru_cache
    from itertools import combinations
    @lru_cache(maxsize=None)
    def A339507(n):
        pallist = set(i for i in range(1,n*(n+1)//2+1) if str(i) == str(i)[::-1])
        return 1 if n == 0 else A339507(n-1) + sum(sum(d)+n in pallist for i in range(n) for d in combinations(range(1,n),i)) # Chai Wah Wu, Dec 08 2020
    
  • Python
    from functools import lru_cache
    def cond(s): ss = str(s); return ss == ss[::-1]
    @lru_cache(maxsize=None)
    def b(n, s):
        if n == 0: return int(cond(s))
        return b(n-1, s) + b(n-1, s+n)
    a = lambda n: b(n, 0)
    print([a(n) for n in range(100)]) # Michael S. Branicky, Oct 05 2022

Extensions

a(23)-a(36) from Michael S. Branicky, Dec 08 2020
a(37)-a(39) from Chai Wah Wu, Dec 11 2020

A339485 Number of subsets of the first n primes whose elements have a prime average.

Original entry on oeis.org

1, 2, 3, 6, 9, 12, 17, 30, 51, 88, 149, 264, 439, 746, 1261, 2234, 4211, 7996, 14899, 28048, 54037, 106442, 208625, 398588, 735365, 1331590, 2421573, 4481896, 8504953, 16497150, 32595915, 64614636, 127968263, 252470776, 495388085, 962475122, 1847742473, 3504948056
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 06 2020

Keywords

Examples

			a(5) = 9 subsets: {2}, {3}, {5}, {7}, {11}, {3, 7}, {3, 11}, {3, 5, 7} and {3, 7, 11}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, s, c) option remember; `if`(n=0,
          `if`(c>0 and denom(s)=1 and isprime(s), 1, 0),
           b(n-1, s, c)+b(n-1, (s*c+ithprime(n))/(c+1), c+1))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=1..40);  # Alois P. Heinz, Dec 08 2020
  • Mathematica
    b[n_, s_, c_] := b[n, s, c] = If[n == 0,
         If[c > 0 && Denominator[s] == 1 && PrimeQ[s], 1, 0],
         b[n-1, s, c] + b[n-1, (s*c + Prime[n])/(c+1), c+1]];
    a[n_] := b[n, 0, 0];
    Array[a, 40] (* Jean-François Alcover, Jul 09 2021, after Alois P. Heinz *)
  • Python
    from sympy import prime, isprime
    from itertools import chain, combinations
    def powerset(s): # skip empty set and singletons
        return chain.from_iterable(combinations(s, r) for r in range(2,len(s)+1))
    def a(n):
        out = n  # count all singletons
        for s in powerset([prime(i) for i in range(1, n+1)]):
            ss = sum(s)
            if ss%len(s) == 0:
                if isprime(ss//len(s)): out += 1
        return out
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Dec 06 2020
    
  • Python
    from itertools import combinations
    from sympy import prime
    def A339485(n):
        c, primeset2 = n, set(prime(i) for i in range(1,n))
        primeset = primeset2 | {prime(n)}
        for l in range(2,n+1):
            for d in combinations(primeset,l):
                a, b = divmod(sum(d),l)
                if b == 0 and a in primeset2:
                    c += 1
        return c # Chai Wah Wu, Dec 07 2020
    
  • Python
    from functools import lru_cache
    from sympy import sieve, isprime
    @lru_cache(maxsize=None)
    def b(n, s, c):
        if n == 0: return int(c and s%c == 0 and isprime(s//c))
        return b(n-1, s, c) + b(n-1, s+sieve[n], c+1)
    a = lambda n: b(n, 0, 0)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Oct 06 2022

Extensions

a(10)-a(30) from Michael S. Branicky, Dec 06 2020
a(31)-a(34) from Chai Wah Wu, Dec 07 2020
a(35)-a(36) from Michael S. Branicky, Dec 08 2020
a(37)-a(38) from Chai Wah Wu, Dec 08 2020

A339613 Number of sets of distinct primes whose sum is a prime, the largest element of a set is prime(n).

Original entry on oeis.org

1, 2, 2, 2, 5, 8, 15, 30, 57, 115, 211, 398, 783, 1528, 3002, 5893, 11432, 22247, 43663, 86348, 170472, 335636, 662988, 1312816, 2595986, 5121351, 10096635, 19930303, 39469458, 78311512, 155219706, 307373610, 607613871, 1202463562, 2383024521, 4736192475, 9413441133
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2020

Keywords

Examples

			a(6) = 8 sets: {13}, {3, 7, 13}, {5, 11, 13}, {7, 11, 13}, {2, 3, 5, 13}, {2, 3, 11, 13}, {2, 5, 11, 13} and {2, 3, 5, 7, 11, 13}.
		

Crossrefs

Cf. A000040, A071810 (partial sums), A127542.

Programs

  • Python
    from sympy import prime, isprime
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def b(n, s, c):
      if n == 0:
        if isprime(s): return 1
        return 0
      return b(n-1, s, c) + b(n-1, s+prime(n), c+1)
    a = lambda n: b(n-1, prime(n), 1)
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Dec 10 2020

Extensions

a(35)-a(37) from Michael S. Branicky, Dec 09 2020

A339556 Number of subsets of the first n primes whose elements have a prime root-mean-square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 11, 16, 19, 30, 41, 54, 69, 106, 177, 272, 397, 686, 1299, 2416, 4225, 7196, 11701, 20352, 36305, 70134, 132721, 248722, 473391, 894318, 1674923, 3054022, 5452067, 9626552, 16696543, 29086462, 51830095, 96887612, 192393735, 397875694
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 08 2020

Keywords

Examples

			a(7) = 11 subsets: {2}, {3}, {5}, {7}, {11}, {13}, {17}, {7, 17}, {5, 7, 17}, {7, 13, 17} and {5, 7, 11, 17}.
		

Crossrefs

Extensions

a(10)-a(40) from Alois P. Heinz, Dec 08 2020

A369392 Number of subsets of {2..n} such that the product of the elements plus 1 is a prime.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 18, 32, 56, 111, 211, 386, 727, 1374, 2654, 5018, 9346, 17946, 33654, 63754, 120619, 229835, 443058, 834608, 1563645, 2999088, 5843122, 11070802, 21253933, 41347141, 79197559, 153735211, 293761934, 570421574, 1112023166, 2153293449
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 22 2024

Keywords

Examples

			a(5) = 9 subsets: {}, {2}, {4}, {2, 3}, {2, 5}, {3, 4}, {2, 3, 5}, {2, 4, 5} and {3, 4, 5}.
		

Crossrefs

Extensions

a(22)-a(35) from Alois P. Heinz, Jan 22 2024
Showing 1-10 of 10 results.