A097805 Number of compositions of n with k parts, T(n, k) = binomial(n-1, k-1) for n, k >= 1 and T(n, 0) = 0^n, triangle read by rows for n >= 0 and 0 <= k <= n.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
A171631 Triangle read by rows: T(n,k) = n*(binomial(n-2, k-1) + n*binomial(n-2, k)), n > 0 and 0 <= k <= n - 1.
1, 4, 2, 9, 12, 3, 16, 36, 24, 4, 25, 80, 90, 40, 5, 36, 150, 240, 180, 60, 6, 49, 252, 525, 560, 315, 84, 7, 64, 392, 1008, 1400, 1120, 504, 112, 8, 81, 576, 1764, 3024, 3150, 2016, 756, 144, 9, 100, 810, 2880, 5880, 7560, 6300, 3360, 1080, 180, 10, 121, 1100
Offset: 1
Comments
If T(0,0) = 0 is prepended, then row sums give A001788.
Examples
Triangle begins: n\k| 0 1 2 3 4 6 7 8 9 ------------------------------------------------- 1 | 1 2 | 4 2 3 | 9 12 3 4 | 16 36 24 4 5 | 25 80 90 40 5 6 | 36 150 240 180 60 6 7 | 49 252 525 560 315 84 7 8 | 64 392 1008 1400 1120 504 112 8 9 | 81 576 1764 3024 3150 2016 756 144 9 ... reformatted. - _Franck Maminirina Ramaharo_, Oct 02 2018
References
- Eugene Jahnke and Fritz Emde, Table of Functions with Formulae and Curves, Dover Publications, 1945, p. 32.
Programs
-
Mathematica
Table[CoefficientList[n*(x + n)*(x + 1)^(n - 2), x], {n, 1, 12}]//Flatten
-
Maxima
T(n, k) := n*(binomial(n - 2, k - 1) + n*binomial(n - 2, k))$ tabl(nn) := for n:1 thru nn do print(makelist(T(n, k), k, 0, n - 1))$ /* Franck Maminirina Ramaharo, Oct 02 2018 */
Formula
Let p(x;n) = (x + 1)^n. Then row n are the coefficients in the expansion of p''(x;n) - x*p'(x;n) + n*p(x;n) = n*(x + n)*(x + 1)^(n - 2).
From Franck Maminirina Ramaharo, Oct 02 2018: (Start)
T(n,1) = A000290(n).
T(n,2) = A011379(n).
T(n,3) = 3*A002417(n-2).
T(n,n-2) = A046092(n-1).
T(n,n-3) = 9*A000292(n-2).
G.f.: y*(x*y - y - 1)/(x*y + y - 1)^3. (End)
Extensions
Edited and new name by Franck Maminirina Ramaharo, Oct 02 2018
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
PARI
PARI
Python
Sage
Formula
Extensions