Original entry on oeis.org
1, 3, 1, 3, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
-
a128218 n = a128218_list !! (n-1)
a128218_list = zipWith (-) (tail a128217_list) a128217_list
-- Reinhard Zumkeller, Jun 20 2015
-
nsrQ[n_]:=Module[{sr=Sqrt[n]},Abs[First[sr-Nearest[{Floor[sr], Ceiling[ sr]}, sr]]]<1/4];Differences[Select[Range[0,250],nsrQ]] (* Harvey P. Dale, May 02 2012 *)
-
default(realprecision, 10000);
is_A128217(n) = ((abs(sqrt(n)-sqrtint(n))<(1/4)) || (abs(sqrt(n)-(1+sqrtint(n)))<(1/4)));
k=0; n=0; prevm=0; while(k<20000, n++; if(is_A128217(n), k++; write("b128218.txt", k, " ", (n-prevm)); prevm = n)); \\ Antti Karttunen, Jan 16 2025
A063656
Numbers k such that the truncated square root of k is equal to the rounded square root of k.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 9, 10, 11, 12, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 36, 37, 38, 39, 40, 41, 42, 49, 50, 51, 52, 53, 54, 55, 56, 64, 65, 66, 67, 68, 69, 70, 71, 72, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121
Offset: 0
The triangle begins as:
0;
1, 2;
4, 5, 6;
9, 10, 11, 12;
16, 17, 18, 19, 20;
25, 26, 27, 28, 29, 30;
36, 37, 38, 39, 40, 41, 42;
49, 50, 51, 52, 53, 54, 55, 56;
... - _Stefano Spezia_, Oct 19 2024
Essentially partial sums of
A051340.
-
a063656 n = a063656_list !! n
a063656_list = f 1 [0..] where
f k xs = us ++ f (k + 1) (drop (k - 1) vs) where
(us, vs) = splitAt k xs
-- Reinhard Zumkeller, Jun 20 2015
-
Select[Range[121],Floor[Sqrt[#]]==Round[Sqrt[#]] &] (* Stefano Spezia, Oct 19 2024 *)
-
{ n=-1; for (m=0, 10^9, if (sqrt(m)%1 < .5, write("b063656.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 27 2009
A220098
Manhattan distances between 2n and 1 in the double spiral with positive integers and 1 at the center.
Original entry on oeis.org
1, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 4, 5, 6, 7, 8, 7, 6, 5, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 13
Offset: 1
From _Philippe Deléham_, Mar 08 2013: (Start)
As a square array, this begins:
1, 1, 2, 2, 3, 3, 4, 4, 5, ...
2, 3, 3, 4, 4, 5, 5, 6, 6, ...
2, 4, 5, 5, 6, 6, 7, 7, 8, ...
3, 4, 6, 7, 7, 8, 8, 9, 9, ...
3, 5, 6, 8, 9, 9, 10, 10, 11, ...
4, 5, 7, 8, 10, 11, 11, 12, 12, ...
4, 6, 7, 9, 10, 12, 13, 13, 14, ...
5, 6, 8, 9, 11, 12, 14, 15, 15, ..., etc.
As a triangle, this begins:
1
2, 1
2, 3, 2
3, 4, 3, 2
3, 4, 5, 4, 3
4, 5, 6, 5, 4, 3, etc. (End)
-
#include
#define SIZE 20
int grid[SIZE][SIZE];
int direction[] = {0, -1, 1, 0, 0, 1, -1, 0};
main() {
int i, j, x1, y1, x2, y2, stepSize;
int direction1pos=0, direction2pos=4, val;
x1 = y1 = x2 = y2 = SIZE/2;
for (val=grid[y1][x1]=1, stepSize=0; ; ++stepSize) {
if (x1<1 || x1>=SIZE-1 || x2<1 || x2>=SIZE-1) break;
if (y1<1 || y1>=SIZE-1 || y2<1 || y2>=SIZE-1) break;
for (i=stepSize|1; i; ++val,--i) {
x1 += direction[direction1pos ];
y1 += direction[direction1pos+1];
x2 += direction[direction2pos ];
y2 += direction[direction2pos+1];
grid[y1][x1] = val*2;
grid[y2][x2] = val*2+1;
printf("%d, ",abs(x1-SIZE/2)+abs(y1-SIZE/2));
}
direction1pos = (direction1pos+2) & 7;
direction2pos = (direction2pos+2) & 7;
}
for (i=0; i
-
step(v, m) = concat(v, vector(m, k, 1+v[#v-k+1]))
a(max_n) = {my(v=[0], k=1); while(#v < max_n+1, v=step(v,k); k++); v[2..max_n+1]} \\ Thomas Scheuerle, Jan 07 2025
-
A053615(n) = if(n<1, 0, sqrtint(n) - A053615(n - sqrtint(n)))
a(n) = A053615(floor( floor( (sqrtint(n*8) + 1)/2 )^2/2 ) + n) \\ Thomas Scheuerle, Jan 07 2025
Showing 1-3 of 3 results.
Comments