A079853
Primes p for which (p-2)! == 1 (mod p^2).
Original entry on oeis.org
2, 3, 11, 107, 4931
Offset: 1
Pavlos Saridis (pavlos19(AT)yahoo.com), Sep 13 2003
-
Select[Prime[Range[700]],Mod[(#-2)!,#^2]==1&] (* Harvey P. Dale, Jun 01 2014 *)
-
forprime(n=2, 10^9, if(Mod((n-2)!, n^2)==1, print1(n, ", "))) \\ Felix Fröhlich, Jun 17 2014
A152413
Generalized Wilson primes of order 17; or primes p such that p^2 divides 16!(p-17)! + 1.
Original entry on oeis.org
A282063
A(n, k) = k-th Wilson prime p of order n with p >= n and k running over the positive integers. Square array read by antidiagonals.
Original entry on oeis.org
5, 13, 2, 563, 3, 7
Offset: 1
Array A(n, k) starts:
5, 13, 563
2, 3, 11, 107, 4931
7
10429
5, 7, 47
11
-
is_wilson(n, order) = Mod((order-1)!*(n-order)!-(-1)^order, n^2)==0
table(rows, cols) = for(x=1, rows, my(i=0); forprime(p=x, , if(is_wilson(p, x), print1(p, ", "); i++; if(i==cols, print(""); break))))
table(4, 3) \\ print initial 4 rows and 3 columns of table
Showing 1-3 of 3 results.
Comments