cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A132231 Primes congruent to 7 (mod 30).

Original entry on oeis.org

7, 37, 67, 97, 127, 157, 277, 307, 337, 367, 397, 457, 487, 547, 577, 607, 727, 757, 787, 877, 907, 937, 967, 997, 1087, 1117, 1237, 1297, 1327, 1447, 1567, 1597, 1627, 1657, 1747, 1777, 1867, 1987, 2017, 2137, 2287, 2347, 2377, 2437, 2467, 2557, 2617, 2647
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Primes ending in 7 with (SOD-1)/3 integer where SOD is sum of digits. - Ki Punches, Feb 07 2009
Intersection of A030432 and A002476. - Ray Chandler, Apr 07 2009
Only from 4927 on, there are more composite numbers than primes in {7+30k}, see A227869. - M. F. Hasler, Nov 02 2013
Terms are non-twin primes A007510, except for 7. - Jonathan Sondow, Oct 27 2017

Crossrefs

Programs

  • Haskell
    a132231 n = a132231_list !! (n-1)
    a132231_list = [x | k <- [0..], let x = 30 * k + 7, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Magma
    [p: p in PrimesUpTo(3000) | p mod 30 eq 7 ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[30*Range[0,100]+7,PrimeQ] (* Harvey P. Dale, Feb 01 2012 *)
    Select[Prime[Range[1000]],MemberQ[{7},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    forstep(p=7,1999,30,isprime(p)&&print1(p",")) \\ M. F. Hasler, Nov 02 2013

Formula

a(n) = A158573(n)*30 + 7. - Ray Chandler, Apr 07 2009
a(n) = A211890(4,n-1) for n <= 5. - Reinhard Zumkeller, Jul 13 2012

Extensions

Extended by Ray Chandler, Apr 07 2009

A129805 Primes congruent to +-1 mod 18.

Original entry on oeis.org

17, 19, 37, 53, 71, 73, 89, 107, 109, 127, 163, 179, 181, 197, 199, 233, 251, 269, 271, 307, 359, 379, 397, 431, 433, 449, 467, 487, 503, 521, 523, 541, 557, 577, 593, 613, 631, 647, 683, 701, 719, 739, 757, 773, 809, 811, 827, 829, 863, 881, 883, 919, 937, 953, 971, 991
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2007

Keywords

Comments

From Katherine E. Stange, Feb 03 2010: (Start)
Equivalently, primes p such that the smallest extension of F_p containing the cube roots of unity also contains the 9th roots of unity.
Equivalently, the primes p for which, if p^t = 1 mod 3, then p^t = 1 mod 9.
Equivalently, primes congruent to +/-1 modulo 9.
Membership or non-membership of the prime p in this sequence and sequence A002144 (primes congruent to 1 mod 4; equivalently, primes p such that the smallest extension of F_p containing the square roots of unity contains the 4th roots of unity) appear to determine the behavior of amicable pairs on the elliptic curve y^2 = x^3 + p (Silverman, Stange 2009). (End)
Primes in A056020. - Reinhard Zumkeller, Jan 07 2012
Primes congruent to (1,17) mod 18. - Vincenzo Librandi, Aug 14 2012
Equivalently, primes such that p^2 == 1 (mod 9). - M. F. Hasler, Apr 16 2022

Crossrefs

Programs

  • Haskell
    a129805 n = a129805_list !! (n-1)
    a129805_list = [x | x <- a056020_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 18 in {1, 17} ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Union[Join[Select[Range[-1, 3000, 18], PrimeQ], Select[Range[1, 3000, 18], PrimeQ]]] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2012 *)
    Select[Prime[Range[4000]],MemberQ[{1,17},Mod[#,18]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    select( {is_A129805(n)=n^2%9==1&&isprime(n)}, primes(199)) \\ M. F. Hasler, Apr 16 2022

A129806 Primes congruent to +-5 mod 18.

Original entry on oeis.org

5, 13, 23, 31, 41, 59, 67, 103, 113, 131, 139, 149, 157, 167, 193, 211, 229, 239, 257, 283, 293, 311, 337, 347, 373, 383, 401, 409, 419, 463, 491, 499, 509, 563, 571, 599, 607, 617, 643, 653, 661, 733, 743, 751, 761, 769, 787, 797, 823, 859, 877, 887, 941, 967, 977, 1013
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2007

Keywords

Comments

Primes congruent to (5,13) mod 18. - Vincenzo Librandi, Aug 14 2012

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 18 in {5, 13} ]; // Vincenzo Librandi, Aug 14 2012
  • Mathematica
    Select[Prime[Range[4000]],MemberQ[{5,13},Mod[#,18]]&] (* Vincenzo Librandi, Aug 14 2012 *)

A132237 Primes congruent to {7, 23} mod 30.

Original entry on oeis.org

7, 23, 37, 53, 67, 83, 97, 113, 127, 157, 173, 233, 263, 277, 293, 307, 337, 353, 367, 383, 397, 443, 457, 487, 503, 547, 563, 577, 593, 607, 653, 683, 727, 743, 757, 773, 787, 863, 877, 907, 937, 953, 967, 983, 997, 1013, 1087, 1103
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

Up to 4913, there are more primes of this form than composites. See also A132231 and A227869 (congruent to 7 only). - M. F. Hasler, Nov 02 2013

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 30 in [7, 23] ]; // Vincenzo Librandi, Aug 14 2012
    
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{7,23},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
  • PARI
    is_A132237(n)=setsearch([7,23],n%30)&&isprime(n) \\ - M. F. Hasler, Nov 02 2013

A129865 List of pairs {n-th prime == 7 mod 18, n-th pair == -7 mod 18}.

Original entry on oeis.org

7, 11, 43, 29, 61, 47, 79, 83, 97, 101, 151, 137, 223, 173, 241, 191, 277, 227, 313, 263, 331, 281, 349, 317, 367, 353, 421, 389, 439, 443, 457, 461, 547, 479, 601, 569, 619, 587, 673, 641, 691, 659, 709, 677, 727, 821, 853, 839, 907, 857, 997, 911, 1033, 929
Offset: 1

Views

Author

Zak Seidov, May 24 2007

Keywords

Comments

Sum of pairs is multiple of 18k, with k=1,4,6,9,11,16,22,24,28,32,34,37,40,45,49,51,57,65,67,73,75,77,86,94,98,106.

Crossrefs

Cf. A129807.

Programs

  • Mathematica
    pp=Prime[Range[1000]];se7=Select[pp,Mod[ #,18]==7&];se11=Select[pp,Mod[ #,18]==11&];nn=Min[Length/@{se7,se11}];tr=Table[{se7[[i]],se11[[i]]},{i,nn}];A1=tr//Flatten;k=(Total/@tr)/18
Showing 1-5 of 5 results.