cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130481 a(n) = Sum_{k=0..n} (k mod 3) (i.e., partial sums of A010872).

Original entry on oeis.org

0, 1, 3, 3, 4, 6, 6, 7, 9, 9, 10, 12, 12, 13, 15, 15, 16, 18, 18, 19, 21, 21, 22, 24, 24, 25, 27, 27, 28, 30, 30, 31, 33, 33, 34, 36, 36, 37, 39, 39, 40, 42, 42, 43, 45, 45, 46, 48, 48, 49, 51, 51, 52, 54, 54, 55, 57, 57, 58, 60, 60, 61, 63, 63, 64, 66, 66, 67, 69, 69, 70, 72, 72
Offset: 0

Views

Author

Hieronymus Fischer, May 29 2007

Keywords

Comments

Essentially the same as A092200. - R. J. Mathar, Jun 13 2008
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 3, A[i,i]:=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010
2-adic valuation of A104537(n+1). - Gerry Martens, Jul 14 2015
Conjecture: a(n) is the exponent of the largest power of 2 that divides all the entries of the matrix {{3,1},{1,-1}}^n. - Greg Dresden, Sep 09 2018

Crossrefs

Programs

  • GAP
    List([0..80], n-> Int((n+1)/3) + Int(2*(n+1)/3)); # G. C. Greubel, Aug 31 2019
  • Magma
    [Floor((n+1)/3) + Floor(2*(n+1)/3): n in [0..80]]; // G. C. Greubel, Aug 31 2019
    
  • Maple
    seq(coeff(series(x*(1+2*x)/((1-x^3)*(1-x)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Aug 31 2019
  • Mathematica
    a[n_]:= Floor[(n+1)/3] + Floor[2(n+1)/3]; Table[a[n], {n, 0, 80}] (* Clark Kimberling, May 28 2012 *)
    a[n_]:= IntegerExponent[A104537[n + 1], 2];
    Table[a[n], {n, 0, 80}]  (* Gerry Martens, Jul 14 2015 *)
    CoefficientList[Series[x(1+2x)/((1-x^3)(1-x)), {x, 0, 80}], x] (* Stefano Spezia, Sep 09 2018 *)
    LinearRecurrence[{1,0,1,-1},{0,1,3,3},100] (* Harvey P. Dale, Jun 14 2021 *)
  • PARI
    main(size)=my(n,k);vector(size,n,sum(k=0,n,k%3)) \\ Anders Hellström, Jul 14 2015
    
  • PARI
    first(n)=my(s); concat(0, vector(n,k,s+=k%3)) \\ Charles R Greathouse IV, Jul 14 2015
    
  • PARI
    a(n)=n\3*3+[0,1,3][n%3+1] \\ Charles R Greathouse IV, Jul 14 2015
    
  • Sage
    def A130481_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+2*x)/((1-x^3)*(1-x))).list()
    A130481_list(80) # G. C. Greubel, Aug 31 2019
    

Formula

a(n) = 3*floor(n/3) + A010872(n)*(A010872(n) + 1)/2.
G.f.: x*(1 + 2*x)/((1-x^3)*(1-x)).
a(n) = n + 1 - (Fibonacci(n+1) mod 2). - Gary Detlefs, Mar 13 2011
a(n) = floor((n+1)/3) + floor(2*(n+1)/3). - Clark Kimberling, May 28 2010
a(n) = n when n+1 is not a multiple of 3, and a(n) = n+1 when n+1 is a multiple of 3. - Dennis P. Walsh, Aug 06 2012
a(n) = n + 1 - sign((n+1) mod 3). - Wesley Ivan Hurt, Sep 25 2017
a(n) = n + (1-cos(2*(n+2)*Pi/3))/3 + sin(2*(n+2)*Pi/3)/sqrt(3). - Wesley Ivan Hurt, Sep 27 2017
a(n) = n + 1 - (n+1)^2 mod 3. - Ammar Khatab, Aug 14 2020
E.g.f.: ((1 + 3*x)*cosh(x) - (cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))*(cosh(x/2) - sinh(x/2)) + (1 + 3*x)*sinh(x))/3. - Stefano Spezia, May 28 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) + log(2)/3. - Amiram Eldar, Sep 17 2022