A130824 a(n) = 2*A004273(n).
0, 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 0
References
- Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
GAP
Concatenation([0], List([1..60], n-> 4*n-2 )); # G. C. Greubel, Dec 30 2019
-
Magma
[4*n-2*Floor((n+2) mod (n+1)):n in [0..60]]; // Vincenzo Librandi, Sep 22 2011
-
Maple
A130827 := proc(n) if n =0 then 0 ; else 4*n-2 ; fi ; end: seq(A130827(n),n=0..120) ; # R. J. Mathar, Oct 28 2007
-
Mathematica
2 Join[{0}, Range[1, 200, 2]] (* Michael De Vlieger, Mar 07 2015 *)
-
PARI
vector(61, n, if(n==1, 0, 4*(n-1) -2) ) \\ G. C. Greubel, Dec 30 2019
-
Sage
[0]+[4*n-2 for n in (1..60)] # G. C. Greubel, Dec 30 2019
Formula
From Stefano Spezia, Dec 09 2019: (Start)
G.f.: 2*x*(1+x)/(1-x)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 0.
a(n) = 4*n - 1 - (-1)^(2^n). (End)
E.g.f: 2*(1 - (1-2*x)*exp(x)). - G. C. Greubel, Dec 30 2019
Extensions
More terms from R. J. Mathar, Oct 28 2007
Comments