cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A038199 Row sums of triangle T(m,n) = number of solutions to 1 <= a(1) < a(2) < ... < a(m) <= n, where gcd(a(1), a(2), ..., a(m), n) = 1, in A020921.

Original entry on oeis.org

1, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, 524286, 1047540, 2097018, 4192254, 8388606, 16772880, 33554400, 67100670, 134217216, 268419060, 536870910, 1073708010, 2147483646
Offset: 1

Views

Author

Temba Shonhiwa (Temba(AT)maths.uz.ac.zw)

Keywords

Comments

The function T(m,n) described above has an inverse: see A038200.
Also, Moebius transform of 2^n - 1 = A000225. Also, number of rationals in [0, 1) whose binary expansions consist just of repeating bits of (least) period exactly n (i.e., there's no preperiodic part), where 0 = 0.000... is considered to have period 1. - Brad Chalfan (brad(AT)chalfan.net), May 29 2006

Crossrefs

A027375, A038199 and A056267 are all essentially the same sequence with different initial terms.
Cf. A059966 (a(n)/n).

Programs

  • Haskell
    a038199 n = sum [a008683 (n `div` d) * (a000225 d)| d <- a027750_row n]
    -- Reinhard Zumkeller, Feb 17 2013
    
  • Mathematica
    Table[Plus@@((2^Divisors[n]-1)MoebiusMu[n/Divisors[n]]),{n,1,31}] (* Brad Chalfan (brad(AT)chalfan.net), May 29 2006 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*(2^d-1)); \\ Michel Marcus, Jun 28 2017
  • Python
    from sympy import mobius, divisors
    def a(n): return sum(mobius(n//d) * (2**d - 1) for d in divisors(n))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 28 2017
    

Formula

a(n) = Sum_{d | n} mu(n/d)*(2^d-1). - Paul Barry, Mar 20 2005
Lambert g.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/((1 - x)*(1 - 2*x)). - Ilya Gutkovskiy, Apr 25 2017
O.g.f.: Sum_{d >= 1} mu(d)*x^d/((1 - x^d)*(1 - 2*x^d)). - Petros Hadjicostas, Jun 18 2019

Extensions

Better description from Michael Somos
More terms from Naohiro Nomoto, Sep 10 2001
More terms from Brad Chalfan (brad(AT)chalfan.net), May 29 2006

A198383 a(n) = Sum_{k=1..n} 2^(n mod k).

Original entry on oeis.org

1, 2, 4, 5, 10, 10, 20, 22, 37, 40, 80, 72, 144, 158, 278, 283, 566, 548, 1096, 1120, 2106, 2162, 4324, 4210, 8389, 8584, 16650, 16772, 33544, 33194, 66388, 66968, 131882, 132690, 265222, 263607, 527214, 530138, 1052078, 1054254, 2108508, 2103282, 4206564, 4216760
Offset: 1

Views

Author

Benoit Cloitre, Oct 24 2011

Keywords

Comments

A more precise asymptotic formula is given in the link.
From David Morales Marciel, Oct 19 2015: (Start)
If n is prime then a(n)=2*a(n-1).
It appears that for every (deficient, abundant)-pair of numbers (11+6x, 11+6x+1), a(11+6x) > a(11+6x+1).
(End)

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^Mod[n, k], {k, n}], {n, 44}] (* Michael De Vlieger, Oct 19 2015 *)
  • PARI
    a(n) = sum(k=1, n, 2^(n%k))

Formula

a(n) = 2^ceiling(n/2) + O(2^(n/3)).
a(n) = 2*a(n-1) + A000079(n) - A130887(n). - Ridouane Oudra, May 03 2025

A130888 Triangle read by rows, A051731(n,k) dot (1, 3, 7, 15, ...) with like numbers of terms.

Original entry on oeis.org

1, 1, 3, 1, 0, 7, 1, 3, 0, 15, 1, 0, 0, 0, 31, 1, 3, 7, 0, 0, 63, 1, 0, 0, 0, 0, 0, 127, 1, 3, 0, 15, 0, 0, 0, 255
Offset: 1

Views

Author

Gary W. Adamson, Jun 07 2007

Keywords

Comments

Row sums = A130887: (1, 4, 8, 19, 32, 74, 128, 274, 519, 1058, ...).

Examples

			First few rows of the triangle:
  1;
  1,  3;
  1,  0,  7;
  1,  3,  0, 15;
  1,  0,  0,  0, 31;
  1,  3,  7,  0,  0, 63;
  ...
Row 4 = (1, 3, 0, 15) = (1, 1, 0, 1) dot (1, 3, 7, 15); where (1, 1, 0, 1) = row 4 of A051731.
		

Crossrefs

Formula

Triangle read by rows, dot product of each row of A051731 and the same number of terms in the series (1, 3, 7, 15, ...).
G.f.: Sum_{k>0} (2^k-1)*(x*y)^k/(1-x^k). - Vladeta Jovovic, Dec 02 2008
Showing 1-3 of 3 results.