cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A143371 Duplicate of A131423.

Original entry on oeis.org

1, 8, 25, 56, 105, 176, 273, 400, 561, 760, 1001, 1288, 1625, 2016, 2465, 2976, 3553, 4200, 4921, 5720, 6601, 7568, 8625, 9776, 11025, 12376, 13833, 15400, 17081, 18880, 20801, 22848, 25025, 27336, 29785, 32376, 35113, 38000, 41041, 44240, 47601
Offset: 1

Views

Author

Keywords

A200838 T(n,k)=Number of 0..k arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases.

Original entry on oeis.org

8, 25, 16, 56, 69, 32, 105, 194, 191, 64, 176, 435, 676, 529, 128, 273, 846, 1817, 2356, 1465, 256, 400, 1491, 4108, 7587, 8210, 4057, 512, 561, 2444, 8239, 19930, 31677, 28610, 11235, 1024, 760, 3789, 15128, 45465, 96690, 132263, 99700, 31113, 2048
Offset: 1

Views

Author

R. H. Hardin Nov 23 2011

Keywords

Comments

Table starts
....8.....25......56......105.......176........273........400.........561
...16.....69.....194......435.......846.......1491.......2444........3789
...32....191.....676.....1817......4108.......8239......15128.......25953
...64....529....2356.....7587.....19930......45465......93472......177381
..128...1465....8210....31677.....96690.....250913.....577660.....1212729
..256...4057...28610...132263....469116....1384813....3570086.....8291391
..512..11235...99700...552247...2276028....7642875...22063924....56687801
.1024..31113..347434..2305835..11042700...42181611..136360286...387572529
.2048..86161.1210736..9627715..53576350..232803603..842739040..2649819955
.4096.238605.4219166.40199277.259938722.1284861277.5208328180.18116728573

Examples

			Some solutions for n=4 k=3
..1....2....3....0....1....1....2....1....3....3....3....1....2....0....1....1
..0....0....0....2....1....0....3....3....1....3....0....3....2....3....1....0
..0....0....2....2....0....3....0....0....1....2....1....3....2....0....1....1
..3....0....1....3....3....3....3....2....1....2....0....1....2....0....0....1
..3....3....3....0....3....0....1....2....1....1....3....3....3....2....2....3
..1....3....2....0....1....3....3....2....2....1....0....1....2....1....1....0
		

Crossrefs

Column 1 is A000079(n+2)
Column 2 is A098182(n+3)
Row 1 is A131423(n+1)

Formula

Empirical for columns:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-2) +a(n-3)
k=3: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3) -a(n-4)
k=4: a(n) = 5*a(n-1) -4*a(n-2) +3*a(n-3) -3*a(n-4) +a(n-5) -a(n-6)
k=5: a(n) = 6*a(n-1) -6*a(n-2) +3*a(n-3) -5*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7)
k=6: a(n) = 7*a(n-1) -9*a(n-2) +6*a(n-3) -9*a(n-4) +7*a(n-5) -7*a(n-6) +5*a(n-7) -2*a(n-8) +a(n-9)
k=7: a(n) = 8*a(n-1) -12*a(n-2) +6*a(n-3) -10*a(n-4) +12*a(n-5) -11*a(n-6) +11*a(n-7) -6*a(n-8) +3*a(n-9) -a(n-10)
Empirical for rows:
n=1: a(k) = (2/3)*k^3 + 3*k^2 + (10/3)*k + 1
n=2: a(k) = (5/12)*k^4 + (19/6)*k^3 + (79/12)*k^2 + (29/6)*k + 1
n=3: a(k) = (4/15)*k^5 + (17/6)*k^4 + (28/3)*k^3 + (73/6)*k^2 + (32/5)*k + 1
n=4: a(k) = (61/360)*k^6 + (93/40)*k^5 + (779/72)*k^4 + (521/24)*k^3 + (1801/90)*k^2 + (239/30)*k + 1
n=5: a(k) = (34/315)*k^7 + (163/90)*k^6 + (1981/180)*k^5 + (557/18)*k^4 + (7807/180)*k^3 + (1361/45)*k^2 + (333/35)*k + 1
n=6: a(k) = (277/4032)*k^8 + (1375/1008)*k^7 + (4933/480)*k^6 + (2723/72)*k^5 + (14161/192)*k^4 + (11197/144)*k^3 + (216211/5040)*k^2 + (929/84)*k + 1
n=7: a(k) = (124/2835)*k^9 + (1123/1120)*k^8 + (244/27)*k^7 + (1991/48)*k^6 + (57133/540)*k^5 + (74183/480)*k^4 + (291427/2268)*k^3 + (9739/168)*k^2 + (568/45)*k + 1

A182222 Number T(n,k) of standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 10, 10, 9, 4, 1, 26, 26, 25, 16, 5, 1, 76, 76, 75, 56, 25, 6, 1, 232, 232, 231, 197, 105, 36, 7, 1, 764, 764, 763, 694, 441, 176, 49, 8, 1, 2620, 2620, 2619, 2494, 1785, 856, 273, 64, 9, 1, 9496, 9496, 9495, 9244, 7308, 3952, 1506, 400, 81, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 19 2012

Keywords

Comments

Also number of self-inverse permutations in S_n with longest increasing subsequence of length >= k. T(4,3) = 4: 1234, 1243, 1324, 2134; T(3,0) = T(3,1) = 4: 123, 132, 213, 321; T(5,3) = 16: 12345, 12354, 12435, 12543, 13245, 13254, 14325, 14523, 15342, 21345, 21354, 21435, 32145, 34125, 42315, 52341.

Examples

			T(4,3) = 4, there are 4 standard Young tableaux of 4 cells and height >= 3:
  +---+   +------+   +------+   +------+
  | 1 |   | 1  2 |   | 1  3 |   | 1  4 |
  | 2 |   | 3 .--+   | 2 .--+   | 2 .--+
  | 3 |   | 4 |      | 4 |      | 3 |
  | 4 |   +---+      +---+      +---+
  +---+
Triangle T(n,k) begins:
    1;
    1,   1;
    2,   2,   1;
    4,   4,   3,   1;
   10,  10,   9,   4,   1;
   26,  26,  25,  16,   5,   1;
   76,  76,  75,  56,  25,   6,  1;
  232, 232, 231, 197, 105,  36,  7,  1;
  764, 764, 763, 694, 441, 176, 49,  8,  1;
  ...
		

Crossrefs

Diagonal and lower diagonals give: A000012, A000027(n+1), A000290(n+1) for n>0, A131423(n+1) for n>1.
T(2n,n) gives A318289.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
           add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) option remember;
          `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
            g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
        end:
    T:= (n, k)-> g(n, n, []) -`if`(k=0, 0, g(n, k-1, [])):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    h[l_] := Module[{n = Length[l]}, Sum[i, {i, l}]! / Product[ Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
    t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]];
    Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

Formula

T(n,k) = A182172(n,n) - A182172(n,k-1) for k>0, T(n,0) = A182172(n,n).

A143368 Triangle read by rows: T(n,k) is the Wiener index of a k X n grid (i.e., P_k X P_n, where P_m is the path graph on m vertices; 1 <= k <= n).

Original entry on oeis.org

0, 1, 8, 4, 25, 72, 10, 56, 154, 320, 20, 105, 280, 570, 1000, 35, 176, 459, 920, 1595, 2520, 56, 273, 700, 1386, 2380, 3731, 5488, 84, 400, 1012, 1984, 3380, 5264, 7700, 10752, 120, 561, 1404, 2730, 4620, 7155, 10416, 14484, 19440
Offset: 1

Views

Author

Emeric Deutsch, Sep 05 2008

Keywords

Comments

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
This is the lower triangular half of a symmetric square array.

Examples

			Presentation as symmetric square array starts:
======================================================
n\k|   1   2    3    4    5    6     7     8     9
---|--------------------------------------------------
1  |   0   1    4   10   20   35    56    84   120 ...
2  |   1   8   25   56  105  176   273   400   561 ...
3  |   4  25   72  154  280  459   700  1012  1404 ...
4  |  10  56  154  320  570  920  1386  1984  2730 ...
5  |  20 105  280  570 1000 1595  2380  3380  4620 ...
6  |  35 176  459  920 1595 2520  3731  5264  7155 ...
7  |  56 273  700 1386 2380 3731  5488  7700 10416 ...
8  |  84 400 1012 1984 3380 5264  7700 10752 14484 ...
9  | 120 561 1404 2730 4620 7155 10416 14484 19440 ...
... - _Andrew Howroyd_, May 27 2017
T(2,2)=8 because in a square we have four distances equal to 1 and two distances equal to 2.
T(2,1)=1 because on the path graph on two vertices there is one distance equal to 1.
T(3,2)=25 because on the P(2) X P(3) graph there are 7 distances equal to 1, 6 distances equal to 2 and 2 distances equal to 3, with 7*1 + 6*2 + 2*3 = 25.
Triangle starts: 0; 1,8; 4,25,72; 10,56,154,320;
		

Crossrefs

Cf. A180569 (row 3), A131423 (row 2).
Main diagonal is A143945.
Cf. A245826.

Programs

  • Maple
    T:=proc(n, k) options operator, arrow: (1/6)*k*n*(n+k)*(k*n-1) end proc: for n to 9 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
  • Mathematica
    Table[k n (n + k) (k n - 1)/6, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, May 28 2017 *)
  • PARI
    T(n,k)=k*n*(n+k)*(k*n-1)/6;
    for (n=1,8,for(k=1,8,print1(T(n,k),", "));print) \\ Andrew Howroyd, May 27 2017

Formula

T(n,k) = k*n*(n+k)*(k*n-1)/6 (k, n >= 1).

A223544 T(n, k) = n*k - 1.

Original entry on oeis.org

0, 1, 3, 2, 5, 8, 3, 7, 11, 15, 4, 9, 14, 19, 24, 5, 11, 17, 23, 29, 35, 6, 13, 20, 27, 34, 41, 48, 7, 15, 23, 31, 39, 47, 55, 63, 8, 17, 26, 35, 44, 53, 62, 71, 80, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 120, 11, 23, 35, 47, 59, 71, 83, 95, 107, 119, 131, 143
Offset: 1

Views

Author

Richard R. Forberg, Jul 19 2013

Keywords

Comments

Previous name was: Triangle T(n,k), 0 < k <= n, T(n,1) = n - 1, T(n,k) = T(n,k-1) + n; read by rows.
This simple triangle arose analyzing f(x) = x/(n + e^(c/x)), for n <> 0. f(x) converges towards a rational number for large values of x, if x is rational. T(n+1,k)/(n+1)^2 equals the fractional portion of f(x) if x is large and restricted to the positive integers, c = 1 and n>=1, whereby the value of the fractional portion changes on a cycle with period n+1 (as k goes from 1 to n+1) for each n in the denominator of f(x). Other, somewhat similar triangles (or repeating fractional patterns) arise with other rational values of n or c, or other rational increments of x (even if a large irrational initial value of x is used).
Let S(n) = row sums = Sum(k>=1, T(n,k)), then:
S(n) = A077414(n); S(n)/(n+2) = A000217(n); S(n)/n = A000096(n);
Let Sq(n) = sum of squares of row elements = Sum(k>=1, T(n,k)^2), then:
Sq(n)/n^2 - 1/n = A058373(n)
Let D(n) = diagonal sums = Sum(k>=1, T(n-k+1, k)) then:
D(2n) = A131423(n); D(2n-1) = 2/3*n^3 + 1/2*n^2 - 7/6*n;
D(2n) - D(2n-1) = A000217(n); D(2n+1) - D(2n) = A115067(n);
D(2n+2) - D(2n)= A056220(n+1); D(2n+1) - D(2n -1) = A014106(n).
Equals A144204 with the first column of negative ones removed. - Georg Fischer, Jul 26 2023

Examples

			Triangle begins as:
0;
1,  3;
2,  5,  8;
3,  7, 11, 15;
4,  9  14, 19, 24;
5, 11, 17, 23, 29, 35;
6, 13, 20, 27, 34, 41, 48;
7, 15, 23, 31, 39, 47, 55, 63;
8, 17, 26, 35, 44, 53, 62, 71, 80;
		

Crossrefs

Formula

Also note: T(n+1,k) = T(n,k)+ k, and T(n,n) = n^2 - 1.
a(n) = A075362(n)-1; a(n)=i(t+1)-1, where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Jul 24 2013
T(n, k) = n*k - 1. - Georg Fischer, Jul 26 2023

Extensions

Simpler name from Georg Fischer, Jul 26 2023

A369324 Array read by ascending antidiagonals: A(n,k) is the number of words of length n on an alphabet [k], avoiding 120 and 210, and sortable by a stack of depth 2, where k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 9, 4, 1, 0, 1, 16, 25, 16, 5, 1, 0, 1, 32, 65, 56, 25, 6, 1, 0, 1, 64, 161, 176, 105, 36, 7, 1, 0, 1, 128, 385, 512, 385, 176, 49, 8, 1, 0, 1, 256, 897, 1408, 1281, 736, 273, 64, 9, 1, 0, 1, 512, 2049, 3712, 3969, 2752, 1281, 400, 81, 10, 1
Offset: 0

Views

Author

Stefano Spezia, Jan 20 2024

Keywords

Examples

			The array begins:
  0, 1,  1,   1,   1,    1, ...
  0, 1,  2,   3,   4,    5, ...
  0, 1,  4,   9,  16,   25, ...
  0, 1,  8,  25,  56,  105, ...
  0, 1, 16,  65, 176,  385, ...
  0, 1, 32, 161, 512, 1281, ...
  ...
		

Crossrefs

Cf. A000004 (k=0), A000012 (k=1), A000079 (k=2), A002064 (k=3), A340257 (k=4).
Cf. A000290 (n=2), A001477 (n=1), A057427 (n=0), A131423 (n=3), A164039.
Cf. A000035, A369325 (main diagonal), A369326.

Programs

  • Mathematica
    A[n_,k_]:=(1-(-1)^k)/2+2^n Sum[Binomial[n+k-3-2i,n-1],{i,0,Floor[(k-2)/2]}]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

A(n,k) = A000035(k) + 2^n*Sum_{i=0..floor((k-2)/2)} binomial(n + k - 3 - 2*i, n - 1).
Sum_{k=0..n} A(n-k,k) = A164039(n-1).

A131422 (A000012 * A127773) + (A127773 * A000012) - A000012.

Original entry on oeis.org

1, 3, 5, 6, 8, 11, 10, 12, 15, 19, 15, 17, 20, 24, 29, 21, 23, 26, 30, 35, 41, 28, 30, 33, 37, 42, 48, 55, 36, 38, 41, 45, 50, 56, 63, 71, 45, 47, 50, 54, 59, 65, 72, 80, 89, 55, 57, 60, 64, 69, 75, 82, 90, 99, 109
Offset: 1

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Comments

Left border = the triangular series, A000217. Right border = A028387, (1, 5, 11, 19, 29, 41, 55, 71, ...). Row sums = A131423: (1, 8, 25, 56, 105, 176, 273, ...).

Examples

			First few rows of the triangle are:
   1;
   3,  5;
   6,  8, 11;
  10, 12, 15, 19;
  15, 17, 20, 24, 29;
  21, 23, 26, 30, 35, 41;
  28, 30, 33, 37, 42, 48, 55;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) options operator, arrow: (1/2)*n*(n+1)+(1/2)*k*(k+1)-1 end proc: for n to 10 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form - Emeric Deutsch, Sep 06 2008

Formula

(A000012 * A127773) + (A127773 * A000012) - A000012 as infinite lower triangular matrices.
T(n,k) = (n^2 + n + k^2 + k - 2)/2 (1 <= k <= n). - Emeric Deutsch, Sep 06 2008

A143370 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the grid P_2 x P_n (1 <= k <= n). P_m is the path graph on m vertices.

Original entry on oeis.org

1, 4, 2, 7, 6, 2, 10, 10, 6, 2, 13, 14, 10, 6, 2, 16, 18, 14, 10, 6, 2, 19, 22, 18, 14, 10, 6, 2, 22, 26, 22, 18, 14, 10, 6, 2, 25, 30, 26, 22, 18, 14, 10, 6, 2, 28, 34, 30, 26, 22, 18, 14, 10, 6, 2, 31, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2, 34, 42, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2
Offset: 1

Views

Author

Emeric Deutsch, Sep 05 2008

Keywords

Comments

Sum of entries in row n = n(2n-1) = A000384(n).
The entries in row n are the coefficients of the Wiener polynomial of the grid P_2 x P_n.
Sum_{k=1..n} k*T(n,k) = A131423(n) = the Wiener index of the grid P_2 x P_n.
The average of all distances in the grid P_2 x P_n is (n+2)/3.

Examples

			T(2,1)=4 because in the graph P_2 x P_2 (a square) we have 4 distances equal to 1.
Triangle starts:
   1;
   4,  2;
   7,  6,  2;
  10, 10,  6,  2;
  13, 14, 10,  6,  2;
		

Crossrefs

Cf. A000384.

Programs

  • Maple
    G:=q*z*(1+2*z+q*z)/((1-z)^2*(1-q*z)): Gser:= simplify(series(G,z=0,15)): for n to 12 do p[n]:=sort(coeff(Gser,z,n)) end do: for n to 12 do seq(coeff(p[n],q, j),j=1..n) end do; # yields sequence in triangular form

Formula

G.f. = G(q,z) = qz(1+2z+qz)/((1-qz)(1-z)^2).

A180865 Square array read by antidiagonals: T(m,n) is the Wiener index of the stacked book graph B(m,n) (m>=1, n>=1). B(m,n) is defined as the graph Cartesian product S(m+1) x P(n), where S(m+1) is the star graph on m+1 nodes and P(n) is the path graph on n nodes. The Wiener index of a connected graph is the sum of distances between all unordered pairs of nodes in the graph.

Original entry on oeis.org

1, 4, 8, 9, 25, 25, 16, 52, 72, 56, 25, 89, 145, 154, 105, 36, 136, 244, 304, 280, 176, 49, 193, 369, 506, 545, 459, 273, 64, 260, 520, 760, 900, 884, 700, 400, 81, 337, 697, 1066, 1345, 1451, 1337, 1012, 561, 100, 424, 900, 1424, 1880, 2160, 2184, 1920, 1404, 760
Offset: 1

Views

Author

Emeric Deutsch, Sep 28 2010

Keywords

Comments

T(1,n) = A131423(n).
T(2,n) = A180569(n).

Examples

			T(2,1)=4 because B(2,1) reduces to the path graph P(3) which has 2 pairs of nodes at distance 1 and 1 pair at distance 2.
Square array T(m,n) begins:
1, 8, 25, 56, 105, ...
4, 25, 72, 154, 280, ...
9, 52, 145, 304, 545, ...
16, 89, 244, 506, 900, ...
		

Crossrefs

Programs

  • Maple
    T := proc (m, n) options operator, arrow: (1/6)*n*(n^2-(m+1)^2+m*n*(m*n+2*n+6*m)) end proc: for n to 10 do seq(T(n+1-j, j), j = 1 .. n) end do; # yields sequence in triangular form

Formula

T(m,n) = (1/6)n[n^2-(m+1)^2+mn(mn+6m+2n)].
The Wiener polynomial p[n](t) of the graph B(m,n) satisfies the recurrence relation p[n] = p[n-1]+mt+(1/2)m(m-1)t^2+[t+mt+2mt^2+m(m-1)t^3]*sum(t^j,j=0..n-2).

A232535 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.

Original entry on oeis.org

1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0

Views

Author

Philippe Deléham, Nov 25 2013

Keywords

Comments

Sum_{k=0..n}T(n,k)*x^k = A164111(n), A000012(n), A002001(n), A001653(n+1), A001019(n), A166965(n) for x =-1, 0, 1, 2, 4, 9 respectively.

Examples

			Triangle begins:
1
1, 2
1, 8, 3
1, 18, 25, 4
1, 32, 98, 56, 5
1, 50, 270, 336, 105, 6
1, 72, 605, 1320, 891, 176, 7
1, 98, 1183, 4004, 4719, 2002, 273, 8
1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
		

Crossrefs

Cf. Columns : A000012, A001105, A180324 ; Diagonals: A000027, A131423
Cf. T(2*n,n): A228329, Row sums : A002001

Programs

  • Maple
    T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k);
    seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
  • Mathematica
    Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)

Formula

G.f.: (1-x)/(1-2*x*(1+y)+x^2*(1-y)^2).
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)+2*T(n-2,k-1)-T(n-2,k)-T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n.
T(n,k) = (A086645(n,k) + A091042(n,k))/2.
T(n,k) = binomial(2*n,2*k)*(2*n+1-k)/(2*n+1-2*k). - Peter Luschny, Nov 26 2013
Showing 1-10 of 11 results. Next