A132355 Numbers of the form 9*h^2 + 2*h, for h an integer.
0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1
Links
- Jason Kimberley, Table of n, a(n) for n = 1..2108
- S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math., Vol. 274, No. 1-3 (2004), pp. 9-24. See A(q).
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
A205808 is the characteristic function.
Cf. A000217, A001082, A002378, A005563, A028347, A036666, A046092, A054000, A056220, A062717, A087475, A132209, A010701, A056020.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.
Programs
-
Magma
a:=func
; [0] cat [a(n*m): m in [-1,1], n in [1..25]]; // Jason Kimberley, Nov 08 2012 -
Maple
readlib(issqr); for n from 0 to 3560 do if(issqr(9*n+1)) then print(n) fi od; # Gary Detlefs, Feb 22 2010 seq(n^2+n+5*ceil(n/2)^2,n=0..39); # Gary Detlefs, Feb 23 2010
-
Mathematica
f[n_]:=IntegerQ[Sqrt[1+9*n]]; Select[Range[0,8! ],f[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) Sort[Table[9n^2+2n,{n,-30,30}]] (* Harvey P. Dale, Dec 06 2013 *)
-
PARI
a(n)=n^2-n+5*(n\2)^2 \\ Charles R Greathouse IV, Sep 28 2015
Formula
a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022
Extensions
Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012
Comments