A143324 Table T(n,k) by antidiagonals. T(n,k) is the number of length n primitive (=aperiodic or period n) k-ary words (n,k >= 1).
1, 2, 0, 3, 2, 0, 4, 6, 6, 0, 5, 12, 24, 12, 0, 6, 20, 60, 72, 30, 0, 7, 30, 120, 240, 240, 54, 0, 8, 42, 210, 600, 1020, 696, 126, 0, 9, 56, 336, 1260, 3120, 4020, 2184, 240, 0, 10, 72, 504, 2352, 7770, 15480, 16380, 6480, 504, 0, 11, 90, 720, 4032, 16800, 46410, 78120, 65280, 19656, 990, 0
Offset: 1
Examples
T(2,3)=6, because there are 6 primitive words of length 2 over 3-letter alphabet {a,b,c}: ab, ac, ba, bc, ca, cb; note that the non-primitive words aa, bb and cc don't belong to the list; secondly note that the words in the list need not be Lyndon words, for example ba can be derived from ab by a cyclic rotation of the positions. Table begins: 1, 2, 3, 4, 5, ... 0, 2, 6, 12, 20, ... 0, 6, 24, 60, 120, ... 0, 12, 72, 240, 600, ... 0, 30, 240, 1020, 3120, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- C. J. Smyth, A coloring proof of a generalisation of Fermat's little theorem, Amer. Math. Monthly 93, No. 6 (1986), pp. 469-471.
- Lucas Vieira Barbosa, Nonclassical Temporal Correlations Under Finite-Memory Constraints, Doctoral Thesis, Univ. Wien (Austria 2024). See p. 35.
- Index entries for sequences related to Lyndon words
Crossrefs
Programs
-
Maple
with(numtheory): f0:= proc(n) option remember; unapply(k^n-add(f0(d)(k), d=divisors(n)minus{n}), k) end; T:= (n,k)-> f0(n)(k); seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
Mathematica
f0[n_] := f0[n] = Function [k, k^n - Sum[f0[d][k], {d, Complement[Divisors[n], {n}]}]]; t[n_, k_] := f0[n][k]; Table[Table[t[n, 1 + d - n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
Formula
T(n,k) = Sum_{d|n} k^d * mu(n/d).
T(n,k) = k^n - Sum_{d
T(n,k) = A143325(n,k) * k.
T(n,k) = A074650(n,k) * n.
So Sum_{d|n} k^d * mu(n/d) == 0 (mod n), this is a generalization of Fermat's little theorem k^p - k == 0 (mod p) for primes p to an arbitrary modulus n (see the Smyth link). - Franz Vrabec, Feb 09 2021
A106512 Array read by antidiagonals: a(n,k) = number of k-colorings of a circle of n nodes (n >= 1, k >= 1).
0, 0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 12, 6, 2, 0, 0, 20, 24, 18, 0, 0, 0, 30, 60, 84, 30, 2, 0, 0, 42, 120, 260, 240, 66, 0, 0, 0, 56, 210, 630, 1020, 732, 126, 2, 0, 0, 72, 336, 1302, 3120, 4100, 2184, 258, 0, 0, 0, 90, 504, 2408, 7770, 15630, 16380, 6564, 510, 2, 0, 0, 110
Offset: 1
Comments
Note that we keep one edge in the circular graph even when there's only one node (so there are 0 colorings of one node with k colors).
Number of closed walks of length n on the complete graph K_{k}. - Andrew Howroyd, Mar 12 2017
Examples
From _Andrew Howroyd_, Mar 12 2017: (Start) Table begins: 0 0 0 0 0 0 0 0 0 ... 0 2 6 12 20 30 42 56 72 ... 0 0 6 24 60 120 210 336 504 ... 0 2 18 84 260 630 1302 2408 4104 ... 0 0 30 240 1020 3120 7770 16800 32760 ... 0 2 66 732 4100 15630 46662 117656 262152 ... 0 0 126 2184 16380 78120 279930 823536 2097144 ... 0 2 258 6564 65540 390630 1679622 5764808 16777224 ... 0 0 510 19680 262140 1953120 10077690 40353600 134217720 ... (End) a(4,3) = 18 because there are three choices for the first node's color (call it 1) and then two choices for the second node's color (call it 2) and then the remaining two nodes can be 12, 13, or 32. So in total there are 3*2*3 = 18 ways. a(3,4) = 4*3*2 = 24 because the three nodes must be three distinct colors.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1274
Crossrefs
Formula
a(n, k) = (k-1)^n + (-1)^n * (k-1).
Extensions
a(67) corrected by Andrew Howroyd, Mar 12 2017
A030180 a(n) = (n^7 - n)/42.
0, 0, 3, 52, 390, 1860, 6665, 19608, 49932, 113880, 238095, 463980, 853138, 1494012, 2509845, 4068080, 6391320, 9769968, 14576667, 21282660, 30476190, 42883060, 59389473, 81067272, 109201700, 145321800, 191233575, 249056028, 321260202, 410711340, 520714285
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Crossrefs
Cf. A133499 (n^7-n).
Programs
-
GAP
List([0..35], n-> (n^7-n)/42); # G. C. Greubel, Dec 28 2019
-
Magma
[(n^7-n)/42: n in [0..35]]; // G. C. Greubel, Dec 28 2019
-
Maple
seq( (n^7-n)/42, n=0..35); # G. C. Greubel, Dec 28 2019
-
Mathematica
Table[(n^7-n)/42, {n,0,35}] (* G. C. Greubel, Dec 28 2019 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,0,3,52,390,1860,6665,19608},40] (* Harvey P. Dale, May 14 2022 *)
-
PARI
a(n) = (n^7-n)/42; \\ Michel Marcus, Aug 30 2013
-
Sage
[(n^7-n)/42 for n in (0..35)] # G. C. Greubel, Dec 28 2019
Formula
a(n) = A133499(n)/42. - Michel Marcus, Aug 30 2013
From Stefano Spezia, Dec 29 2019: (Start)
O.g.f.: x^2*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4)/(1 - x)^8.
E.g.f.: (1/42)*exp(x)*x^2*(63 + 301*x + 350*x^2 + 140*x^3 + 21*x^4 + x^5).
(End)
A363916 Array read by descending antidiagonals. A(n, k) = Sum_{d=0..k} A363914(k, d) * n^d.
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 6, 6, 4, 1, 0, 0, 12, 24, 12, 5, 1, 0, 0, 30, 72, 60, 20, 6, 1, 0, 0, 54, 240, 240, 120, 30, 7, 1, 0, 0, 126, 696, 1020, 600, 210, 42, 8, 1, 0, 0, 240, 2184, 4020, 3120, 1260, 336, 56, 9, 1
Offset: 0
Comments
Examples
Array A(n, k) starts: [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 [1] 1, 1, 0, 0, 0, 0, 0, 0, 0, ... A019590 [2] 1, 2, 2, 6, 12, 30, 54, 126, 240, ... A027375 [3] 1, 3, 6, 24, 72, 240, 696, 2184, 6480, ... A054718 [4] 1, 4, 12, 60, 240, 1020, 4020, 16380, 65280, ... A054719 [5] 1, 5, 20, 120, 600, 3120, 15480, 78120, 390000, ... A054720 [6] 1, 6, 30, 210, 1260, 7770, 46410, 279930, 1678320, ... A054721 [7] 1, 7, 42, 336, 2352, 16800, 117264, 823536, 5762400, ... A218124 [8] 1, 8, 56, 504, 4032, 32760, 261576, 2097144, 16773120, ... A218125 A000012|A002378| A047928 | A218130 | A218131 A001477,A007531, A061167, A133499, (diagonal A252764) . Triangle T(n, k) starts: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 0, 2, 1; [4] 0, 0, 2, 3, 1; [5] 0, 0, 6, 6, 4, 1; [6] 0, 0, 12, 24, 12, 5, 1; [7] 0, 0, 30, 72, 60, 20, 6, 1; [8] 0, 0, 54, 240, 240, 120, 30, 7, 1;
Links
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Crossrefs
Programs
-
Maple
A363916 := (n, k) -> local d; add(A363914(k, d) * n^d, d = 0 ..k): for n from 0 to 9 do seq(A363916(n, k), k = 0..8) od;
-
SageMath
def A363916(n, k): return sum(A363914(k, d) * n^d for d in range(k + 1)) for n in range(9): print([A363916(n, k) for k in srange(9)]) def T(n, k): return A363916(k, n - k)
Comments