A163353
G.f.: A(x,y) = Sum_{n>=0,m>=0} (2^m-1)^n*x^n * log(1+y)^m/m!.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 4, 4, 1, 0, 1, 13, 44, 67, 56, 28, 8, 1, 0, 1, 40, 360, 1546, 4144, 7896, 11408, 12866, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 0, 1, 121, 2680, 27550, 180096, 866432, 3308736, 10453960, 27991600, 64472200, 129002640, 225783740, 347370800, 471435000, 565722640, 601080385, 565722720, 471435600, 347373600
Offset: 0
Triangle begins:
1,1;
0,1,1;
0,1,4,4,1;
0,1,13,44,67,56,28,8,1;
0,1,40,360,1546,4144,7896,11408,12866,11440,8008,4368,1820,560,120,16,1;
...
-
Table[Sum[(-1)^(n - j)*Binomial[n, j]*Binomial[2^j, k], {j, 0,
n}], {n, 0, 5}, {k, 0, 2^n}]//Flatten (* G. C. Greubel, Dec 19 2016 *)
-
T(n,k)=sum(j=0,n,(-1)^(n-j)*binomial(n,j)*binomial(2^j,k))
A133990
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(2^k + n - 1,n).
Original entry on oeis.org
1, 1, 5, 71, 2747, 306861, 106709627, 123122238887, 492425723170553, 7012142056418141897, 361269845371107759765065, 68033187103968192731087467135, 47171609221094330538117045468744655
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 71*x^3 + 2747*x^4 + 306861*x^5 +...
where
A(x) = 1 - log(1-x) + log(1-3*x)^2/2! - log(1-7*x)^3/3! + log(1-15*x)^4/4! - log(1-31*x)^5/5! + log(1-63*x)^6/6! - log(1-127*x)^7/7! + log(1-255*x)^8/8! +...
-
A133990 := proc(n) add((-1)^(n-k)*binomial(n,k)*binomial(2^k+n-1,n),k=0..n) ; end: seq(A133990(n),n=0..15) ; # R. J. Mathar, Jan 30 2008
-
Table[Sum[(-1)^(n-k) Binomial[n,k]Binomial[2^k+n-1,n],{k,0,n}], {n,0,15}] (* Harvey P. Dale, Nov 24 2011 *)
-
{a(n)=local(A=1,X=x+x*O(x^n)); A=sum(k=0,n,log(1/(1-(2^k-1)*X))^k/k!); polcoeff(A,n)}
for(n=0,20,print1(a(n),", "))
-
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{a(n)=1/n!*sum(k=0,n,(-1)^(n-k)*Stirling1(n,k)*(2^k-1)^n)}
for(n=0, 20, print1(a(n), ", "))
A133991
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(2^k+n-1,n).
Original entry on oeis.org
1, 3, 17, 193, 5427, 463023, 134675759, 139917028089, 527871326293913, 7281357469833220843, 368715613115281663650597, 68787958348542935934247206953, 47453320297069210448891035137347047
Offset: 0
-
Table[Sum[(-1)^(n-k) * StirlingS1[n, k]*(2^k + 1)^n, {k, 0, n}]/n!, {n, 0, 12}] (* Vaclav Kotesovec, Jun 08 2019 *)
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(2^k+n-1, n)); \\ Seiichi Manyama, Feb 24 2023
More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 14 2008
A136648
Inverse binomial transform of A014070: a(n) = Sum_{k=0..n} (-1)^(n-k)*C(n,k)*C(2^k,k).
Original entry on oeis.org
1, 1, 3, 43, 1625, 192785, 73792371, 94005141667, 408909577044065, 6204433373664395569, 334203804752658372354515, 64828498485572980097719939179, 45811084061472137471487315433296153, 119028111984311982345314987179033877373025, 1145664208319965667452046935744516601565935434531
Offset: 0
-
Table[Sum[(-1)^(n-k)*Binomial[n,k]*Binomial[2^k,k], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
{a(n)=sum(k=0,n,(-1)^(n-k)*binomial(n,k)*binomial(2^k,k))}
-
/* Using the g.f.: */ {a(n)=my(X=x+x*O(x^n));polcoeff(sum(k=0,n,(log(1+(2^k+1)*X)-log(1+X))^k/k!)/(1+X),n)}
Showing 1-4 of 4 results.
Comments