cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A134641 Prime permutational numbers A134640.

Original entry on oeis.org

2, 5, 7, 11, 19
Offset: 1

Views

Author

Artur Jasinski, Nov 05 2007

Keywords

Comments

Conjecture: This sequence is finite and complete.
The conjecture is correct: in base 2k permutational numbers are divisible by 2k-1 and in base 2k+1 permutational numbers are divisible by k. Hence it suffices to check bases up to 3. - Charles R Greathouse IV, Dec 14 2015

Crossrefs

Cf. A134640.

Programs

  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[PrimeQ[j], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 10}]; a (*Artur Jasinski*)
  • PARI
    for(b=2,3, for(i=0,b!-1, p=fromdigits(apply(j->j-1, numtoperm(b,i)),b); if(isprime(p), print1(p", ")))) \\ Charles R Greathouse IV, Dec 14 2015

A134642 Nonprime permutational numbers A134640.

Original entry on oeis.org

0, 1, 15, 21, 27, 30, 39, 45, 54, 57, 75, 78, 99, 108, 114, 120, 135, 141, 147, 156, 177, 180, 198, 201, 210, 216, 225, 228, 194, 198, 214, 222, 238, 242, 294, 298, 334, 346, 358, 366, 414, 422, 434, 446, 482, 486, 538, 542, 558, 566, 582, 586, 694, 698, 714
Offset: 1

Views

Author

Artur Jasinski, Nov 05 2007, Nov 07 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[PrimeQ[j], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 10}]; a (*Artur Jasinski*)
    Select[Flatten[Table[FromDigits[#,n]&/@Permutations[Range[0,n-1]],{n,5}]],!PrimeQ[#]&] (* Harvey P. Dale, Nov 30 2023 *)

A134643 Odd permutational numbers A134640.

Original entry on oeis.org

1, 5, 7, 11, 15, 19, 21, 27, 39, 45, 57, 75, 99, 135, 141, 147, 177, 201, 225, 1865, 1895, 1905, 1935, 2045, 2105, 2255, 2265, 2285, 2355, 2475, 2535, 2945, 2975, 2985, 3015, 3305, 3395, 3415, 3445, 3515, 3525, 3575, 3595, 3645, 3655, 3735, 3805, 3825, 3835
Offset: 1

Views

Author

Artur Jasinski, Nov 05 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[OddQ[j],AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 10}]; a (*Artur Jasinski*)

A134644 Even permutational numbers A134640.

Original entry on oeis.org

0, 2, 30, 54, 78, 108, 114, 120, 156, 180, 198, 210, 216, 228, 194, 198, 214, 222, 238, 242, 294, 298, 334, 346, 358, 366, 414, 422, 434, 446, 482, 486, 538, 542, 558, 566, 582, 586, 694, 698, 714, 722, 738, 742, 894, 898, 954, 970, 978, 990, 1014, 1022, 1054
Offset: 1

Views

Author

Artur Jasinski, Nov 05 2007

Keywords

Comments

Odd permutational numbers see A134643

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[OddQ[j], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 10}]; a (*Artur Jasinski*)

A134741 Permutational numbers A134640 which are squares.

Original entry on oeis.org

0, 1, 225, 2500, 7225, 38025, 106929, 314721, 622521, 751689, 1750329, 3111696, 6002500, 7568001, 8168164, 8282884, 10323369, 11682724, 12517444, 23367556, 23483716, 25623844, 28536964, 33292900, 39513796, 61058596, 73513476, 74545956, 94517284, 105144516, 112572100, 112656996, 132756484
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^10: # for terms <= N
    extend:= proc(x, N, S, b, k)
      local i, R;
      R:= NULL;
      for i in S while x + i*b^k <= N do
        if k = 0 then
           if issqr(x+i*b^k) then R:= R, x+i*b^k fi
        else
           R:= R, procname(x+i*b^k, N, subs(i=NULL, S), b, k-1)
        fi
      od;
      R
    end proc:
    f:= (b, N) -> extend(0, N, [$0..(b-1)], b, b-1):
    R:= 0:
    for b from 2 while b^(b-2) < N do
      R:= R, f(b, N);
    od:
    sort([R]); # Robert Israel, Sep 04 2020
  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[IntegerQ[j^(1/2)], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 7}]; a

Formula

a(n) = A134742(n)^2.

Extensions

Corrected and more terms from Robert Israel, Sep 04 2020

A134742 Numbers whose square is a permutational number A134640.

Original entry on oeis.org

0, 1, 15, 50, 85, 195, 327, 561, 789, 867, 1323, 1764, 2450, 2751, 2858, 2878, 3213, 3418, 3538, 4834, 4846, 5062, 5342, 5770, 6286, 7814, 8574, 8634, 9722, 10254, 10610, 10614, 11522, 11702, 11826, 12363, 12543, 13490, 14246, 14502, 14538, 14676, 14818, 14902, 15186, 15434, 15681, 15874, 15963
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    extend:= proc(x,N,S,b,k)
      local i,R;
      R:= NULL;
      for i in S while x + i*b^k <= N^2 do
        if k = 0 then
           if issqr(x+i*b^k) then R:= R, sqrt(x+i*b^k) fi
        else
           R:= R, procname(x+i*b^k,N,subs(i=NULL,S),b,k-1)
        fi
      od;
      R
    end proc:
    f:= (b,N) -> extend(0,N,[$0..(b-1)],b,b-1):
    R:= 0:
    for b from 2 while b^(b-2) < N^2 do
      R:= R, f(b,N);
    od:
    sort([R]); # Robert Israel, Sep 04 2020
  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w =Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; If[IntegerQ[j^(1/2)], AppendTo[a, j]], {m, 1, Length[w]}], {n, 0, 7}]; Sqrt[a]

Formula

a(n) = sqrt(A134741(n)).

Extensions

Corrected and more terms from Robert Israel, Sep 04 2020

A134748 a(n)=largest permutational number of order n - smallest permutational number of order n+1 : A062813(n)-A134703(n+1) : A134640(!n)-A134640(!n+1).

Original entry on oeis.org

-1, -3, -6, 34, 1065, 21915, 458276, 10381380, 257910255, 7023426505, 208771773342, 6739114316358, 235020287563061, 8812102803936999, 353674208662429320, 15133351271499561736, 687862113868372542939, 33104027829427142199381
Offset: 1

Views

Author

Artur Jasinski, Nov 08 2007, Nov 10 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; d = {}; e = {-1}; Do[b = {}; c = {}; Do[If[k > 0, AppendTo[b, k]]; AppendTo[c, n - k], {k, 0, n}] ; AppendTo[a, FromDigits[b, n + 1]]; AppendTo[d, FromDigits[c, n + 1]], {n, 1, 30}]; Do[AppendTo[e, d[[n]] - a[[n + 1]]], {n, 1, 29}]; e

A134745 Numbers which are not permutational numbers A134640.

Original entry on oeis.org

3, 4, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; AppendTo[a, j], {m, 1, Length[w]}], {n, 0, 5}]; c = Table[n, {n, 0, 44790}]; k = Complement[c, a] (*Artur Jasinski*)

A134749 First differences of permutational numbers : a(n)=A134640(n+1)-A134640(n).

Original entry on oeis.org

1, 1, 3, 2, 4, 4, 4, 2, 6, 3, 9, 6, 9, 3, 18, 3, 21, 9, 6, 6, 15, 6, 6, 9, 21, 3, 18, 3, 9, 6, 9, 3, -34, 4, 16, 8, 16, 4, 52, 4, 36, 12, 12, 8, 48, 8, 12, 12, 36, 4, 52, 4, 16, 8, 16, 4, 108, 4, 16, 8, 16, 4, 152, 4, 56, 16, 8, 12, 24, 8, 32, 16, 32, 8, 28, 4, 36, 12, 12, 8, 84, 4, 36, 12, 12, 8, 28, 4, 56, 16, 8, 12, 144, 12, 8, 16, 56, 4, 28, 8, 12
Offset: 1

Views

Author

Artur Jasinski, Nov 08 2007

Keywords

Comments

Negative numbers occur at n=!k = A007489(k) and {k=3,4,5,...}

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[AppendTo[b, n]; w = Permutations[b]; Do[j = FromDigits[w[[m]], n + 1]; AppendTo[a, j], {m, 1, Length[w]}], {n, 0, 5}]; d = {}; Do[AppendTo[d, a[[n + 1]] - a[[n]]], {n, 1, Length[a] - 1}] ; d (*Artur Jasinski*)
    Differences[Flatten[Table[FromDigits[#,n]&/@Permutations[Range[0,n-1]], {n,5}]]] (* Harvey P. Dale, Dec 09 2014 *)

A023811 Largest metadrome (number with digits in strict ascending order) in base n.

Original entry on oeis.org

0, 1, 5, 27, 194, 1865, 22875, 342391, 6053444, 123456789, 2853116705, 73686780563, 2103299351334, 65751519677857, 2234152501943159, 81985529216486895, 3231407272993502984, 136146740744970718253, 6106233505124424657789, 290464265927977839335179
Offset: 1

Views

Author

Keywords

Comments

Also smallest zeroless pandigital number in base n. - Franklin T. Adams-Watters, Nov 15 2006
The smallest permutational number in A134640 in the n-positional system. - Artur Jasinski, Nov 07 2007

Examples

			a(5) = 1234[5] (in base 5) = 1*5^3 + 2*5^2 + 3*5 + 4 = 125 + 50 + 15 + 4 = 194.
a(10) = 123456789 (in base 10).
		

Crossrefs

Programs

  • Haskell
    a023811 n = foldl (\val dig -> val * n + dig) 0 [0 .. n - 1]
    -- Reinhard Zumkeller, Aug 29 2014
    
  • Magma
    [0] cat [(n^n-n^2+n-1)/(n-1)^2: n in [2..20]]; // Vincenzo Librandi, May 22 2012
    
  • Maple
    0, seq((n^n-n^2+n-1)/(n-1)^2, n=2..100); # Robert Israel, Dec 13 2015
  • Mathematica
    Table[Total[(#1 n^#2) & @@@ Transpose@ {Range[n - 1], Reverse@ (Range[n - 1] - 1)}], {n, 20}] (* Michael De Vlieger, Jul 24 2015 *)
    Table[Sum[(b - k)*b^(k - 1), {k, b - 1}], {b, 30}] (* Clark Kimberling, Aug 22 2015 *)
    Table[FromDigits[Range[0, n - 1], n], {n, 20}] (* L. Edson Jeffery, Dec 13 2015 *)
  • PARI
    {for(i=1,18,cuo=0; for(j=1,i-1,cuo=cuo+j*i^(i-j-1)); print1(cuo,", "))} \\\ Douglas Latimer, May 16 2012
    
  • PARI
    A023811(n)=if(n>1,(n^n-n^2)\(n-1)^2+1)  \\ M. F. Hasler, Jan 22 2013
    
  • Python
    def a(n): return (n**n - n**2 + n - 1)//((n - 1)**2) if n > 1 else 0
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Apr 24 2023

Formula

a(n) = Sum_{j=1...n-1} j*n^(n-1-j).
lim_{n->infinity} a(n)/a(n-1) - a(n-1)/a(n-2) = exp(1). - Conjectured by Gerald McGarvey, Sep 26 2004. Follows from the formula below and lim_{n->infinity} (1+1/n)^n = e. - Franklin T. Adams-Watters, Jan 25 2010
a(n) = (n^n-n^2+n-1)/(n-1)^2 = A058128(n)-1 = n*A060073(n)-1 (for n>=2). - Henry Bottomley, Feb 21 2001

Extensions

Edited by M. F. Hasler, Jan 22 2013
Showing 1-10 of 18 results. Next