A138394
Smallest number with a(n) divisors is in A134865.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 9, 10, 16, 20, 24, 30, 48, 60, 64, 72, 80, 84, 100, 108, 126, 162, 189, 192, 224, 384, 448, 512, 576, 672, 11520
Offset: 1
8 is in this sequence because the smallest number with 8 divisors (24) is a member of A134865.
A140752
Indices of elements of A005179 that belong to A134865 (in order of their appearance in A134865). The sorted version of this sequence is given by A138394.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 9, 10, 16, 20, 24, 30, 48, 60, 64, 72, 80, 84, 100, 108, 126, 192, 162, 224, 189, 384, 448, 512, 576, 672, 11520
Offset: 1
A140753
Subsequence of elements of A005179 that appear in A134865.
Original entry on oeis.org
1, 2, 4, 6, 12, 24, 36, 48, 120, 240, 360, 720, 2520, 5040, 7560, 10080, 15120, 20160, 45360, 50400, 100800, 352800, 705600, 332640, 665280, 4324320, 8648640, 17297280, 21621600, 43243200, 13492656777600
Offset: 1
A141586
Strongly refactorable numbers: numbers n such that if n is divisible by d, it is divisible by the number of divisors of d.
Original entry on oeis.org
1, 2, 12, 24, 36, 72, 240, 480, 720, 1440, 3360, 4320, 5280, 6240, 6720, 8160, 9120, 10080, 11040, 13440, 13920, 14880, 15840, 17760, 18720, 19680, 20160, 20640, 21600, 22560, 24480, 25440, 27360, 28320, 29280, 32160, 33120, 34080
Offset: 1
72 qualifies because its divisors are 1,2,3,4,6,8,9,12,18,24,36,72, which have 1,2,2,3,4,4,3,6,6,8,9,12 divisors respectively and all of those numbers are divisors of 72.
- Dmitriy Kunisky, German Manoim and N. J. A. Sloane, On strongly refactorable numbers, in preparation.
Cf.
A033950,
A134865,
A109802,
A141551,
A141756,
A141758,
A141900,
A142593,
A142594,
A100549,
A100762,
A082725,
A135130,
A143718,
A143719,
A143720.
-
isA141586 := proc(n) local dvs,d ; dvs := numtheory[divisors](n) ; for d in dvs do if not numtheory[tau](d) in dvs then RETURN(false) : fi; od: RETURN(true) ; end: for n from 1 to 100000 do if isA141586(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Aug 26 2008
## A100549: if n = prod_p p^e_p, then pp = largest prime <= 1 + max e_p
with(numtheory):
pp := proc(n) local f,m; option remember; if (n = 1) then return 1; end if; m := 1: for f in op(2..-1,ifactors(n)) do if (f[2] > m) then m := f[2]: end if; end do; prevprime(m+2); end proc;
isA141586 := proc(n) local ff,f,g,p,i; global pp;
ff := op(2..-1,ifactors(n));
for f in ff do
p := f[1];
if (add(floor(log(1+g[2])/log(p)),g in ff) > f[2]) then
return false;
end if;
end do;
for i from 1 to pi(pp(n)) do
p := ithprime(i);
if (n mod p <> 0) then
if (add(floor(log(1+g[2])/log(p)),g in ff) > 0) then
return false;
end if;
end if;
end do;
return true;
end proc; # David Applegate and N. J. A. Sloane, Sep 15 2008
-
l = {}; For[n = 1, n < 100000, n++, b = DivisorSigma[0, Divisors[n]]; If[Length[Select[b, Mod[n, # ] > 0 &]] == 0, AppendTo[l, n]]]; l (* Stefan Steinerberger, Aug 25 2008 *)
sfnQ[n_]:=AllTrue[DivisorSigma[0,Divisors[n]],Mod[n,#]==0&]; Select[ Range[ 35000],sfnQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 27 2019 *)
-
is_A141586(n)={ bittest(n,0) & return(n==1); fordiv(n,d,n % numdiv(d) & return);1 } \\ M. F. Hasler, Dec 05 2010
-
is_A141586 = lambda n: all(number_of_divisors(d).divides(n) for d in divisors(n)) # D. S. McNeil, Dec 05 2010
More terms from German Manoim (gerrymanoim(AT)gmail.com), Aug 27 2008
Showing 1-4 of 4 results.
Comments