cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135030 Generalized Fibonacci numbers: a(n) = 6*a(n-1) + 2*a(n-2).

Original entry on oeis.org

0, 1, 6, 38, 240, 1516, 9576, 60488, 382080, 2413456, 15244896, 96296288, 608267520, 3842197696, 24269721216, 153302722688, 968355778560, 6116740116736, 38637152257536, 244056393778688, 1541612667187200
Offset: 0

Views

Author

Rolf Pleisch, Feb 10 2008, Feb 14 2008

Keywords

Comments

For n>0, a(n) equals the number of words of length n-1 over {0,1,...,7} in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Jan 08 2017

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 6*Self(n-1) + 2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
    
  • Maple
    A:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(n) = 2*(3*a(n-1) + a(n-2))},a(n),remember):
    seq(A(n),n=1..30); # Robert Israel, Sep 16 2014
  • Mathematica
    Join[{a=0,b=1},Table[c=6*b+2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    LinearRecurrence[{6,2},{0,1},30] (* or *) CoefficientList[Series[ -(x/(2x^2+6x-1)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n)=([0,1; 2,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,6,-2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(0) = 0; a(1) = 1; a(n) = 2*(3*a(n-1) + a(n-2)).
a(n) = 1/(2*sqrt(11))*( (3 + sqrt(11))^n - (3 - sqrt(11))^n ).
G.f.: x/(1 - 6*x - 2*x^2). - Harvey P. Dale, Jun 20 2011
a(n+1) = Sum_{k=0..n} A099097(n,k)*2^k. - Philippe Deléham, Sep 16 2014
E.g.f.: (1/sqrt(11))*exp(3*x)*sinh(sqrt(11)*x). - G. C. Greubel, Sep 17 2016

Extensions

More terms from Joshua Zucker, Feb 23 2008