A135276 a(0)=0, a(1)=1; for n>1, a(n) = a(n-1) + n^0 if n odd, a(n) = a(n-1) + n^1 if n is even.
0, 1, 3, 4, 8, 9, 15, 16, 24, 25, 35, 36, 48, 49, 63, 64, 80, 81, 99, 100, 120, 121, 143, 144, 168, 169, 195, 196, 224, 225, 255, 256, 288, 289, 323, 324, 360, 361, 399, 400, 440, 441, 483, 484, 528, 529, 575, 576, 624, 625, 675, 676, 728, 729, 783, 784, 840, 841, 899, 900, 960, 961
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Girtrude Hamm, Classification of lattice triangles by their two smallest widths, arXiv:2304.03007 [math.CO], 2023.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[(2*n^2+6*n+1+(2*n-1)*(-1)^n)/8 : n in [0..100]]; // Wesley Ivan Hurt, Mar 22 2016
-
Maple
A135276:=n->( 2*n^2 + 6*n + 1 + (2*n-1)*(-1)^n )/8: seq(A135276(n), n=0..100); # Wesley Ivan Hurt, Mar 22 2016
-
Mathematica
a = {}; r = 0; s = 1; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 0, 100}]; a (* Artur Jasinski *) LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 3, 4, 8}, 50] (* G. C. Greubel, Oct 08 2016 *)
-
PARI
A135276(n)=if(n%2,((n+1)/2)^2,(n/2+1)^2-1) \\ M. F. Hasler, May 17 2008
-
PARI
my(x='x+O('x^200)); concat(0, Vec(x*(1+2*x-x^2)/((1+x)^2*(1-x)^3))) \\ Altug Alkan, Mar 23 2016
Formula
a(n) = (n/2 + 1)^2 - 1 if n is even, ((n+1)/2)^2 if n is odd. - M. F. Hasler, May 17 2008
From R. J. Mathar, Feb 22 2009: (Start)
G.f.: x*(1+2*x-x^2)/((1+x)^2*(1-x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
a(n) = (2*n^2 + 6*n + 1 + (2*n-1)*(-1)^n)/8. - Luce ETIENNE, Jul 08 2014
a(n) = (floor(n/2)+1)^2 + (n mod 2) - 1. - Wesley Ivan Hurt, Mar 22 2016
Sum_{n>=1} 1/a(n) = 3/4 + Pi^2/6. - Amiram Eldar, Sep 08 2022
Extensions
Offset corrected by R. J. Mathar, Feb 22 2009
Edited by Michel Marcus, Apr 07 2023
Comments