cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135922 Inverse binomial transform of A006116, which is the sum of Gaussian binomial coefficients [n,k] for q=2.

Original entry on oeis.org

1, 1, 2, 6, 26, 158, 1330, 15414, 245578, 5382862, 162700898, 6801417318, 394502066810, 31849226170622, 3589334331706258, 566102993389615254, 125225331231990004138, 38920655753545108286254, 17021548688670112527781058, 10486973328106497739526535366
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2007

Keywords

Comments

Let B = {v_1,v_2,...,v_n} be a basis for F_2^n. a(n) is the number of subspaces of F_2^n that do not contain any of the vectors in B. Moreover, for 1<=k<=n, let S be a size k subset of B. a(k) is the number of subspaces of F_2^n that do not contain any of the vectors in S but do contain all the vectors in B - S. - Geoffrey Critzer, May 03 2025
Also number of Stanley graphs on n nodes. For precise definition see Knuth (1997). - Alois P. Heinz, Sep 24 2019
Also the number of naturally labeled posets on [n] with height at most two. - David Bevan, Jul 28 2022; Nov 16 2023
Also the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple aManfred Scheucher, Jan 05 2024

Examples

			O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-7x)) + x^4/((1-x)*(1-3x)*(1-7x)*(1-15x)) + ...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 318.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(mul(
          (2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
        end:
    a:= proc(n) option remember;
          add(b(n-j)*binomial(n,j)*(-1)^j, j=0..n)
        end:
    seq(a(n), n=0..19);  # Alois P. Heinz, Sep 24 2019
  • Mathematica
    Table[SeriesCoefficient[Sum[x^n/Product[(1-(2^k-1)*x),{k,0,n}],{n,0,nn}],{x,0,nn}] ,{nn,0,20}] (* Vaclav Kotesovec, Aug 23 2013 *)
    b[n_] := b[n] = Sum[Product[(2^(i+k)-1)/(2^i-1), {i, 1, n-k}], {k, 0, n}];
    a[n_] := a[n] = Sum[(-1)^j b[n-j] Binomial[n, j], {j, 0, n}];
    a /@ Range[0, 19] (* Jean-François Alcover, Mar 10 2020, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-(2^j-1)*x+x*O(x^n))), n)
    
  • Sage
    # After Vladimir Kruchinin.
    def a(n):
        @cached_function
        def T(n, k):
            if k == 1 or k == n: return 1
            return (2^k-1)*T(n-1, k) + T(n-1, k-1)
        return sum(T(n, k) for k in (1..n)) if n > 0 else 1
    print([a(n) for n in (0..19)]) # Peter Luschny, Feb 26 2020

Formula

O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - (2^k-1)*x).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-x*(2^k-1))/(1-x/(x-1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2]/QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2]/QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - Vaclav Kotesovec, Aug 23 2013
a(n) = Sum_{k=0..n} qStirling2(n,k), where qStirling2 is the triangle A139382. - Vladimir Kruchinin, Feb 26 2020
G.f.: f(1), where f(y) = 1 + x*((y-1)*f(y) + f(2*y)). - David Bevan, Jul 28 2022
E.g.f.: exp(-x)*g(x) where g(x) is the e.g.f. for A006116. (given in D. E. Knuth link) - Geoffrey Critzer, May 03 2025

Extensions

References for Stanley graphs added by David Bevan, Jul 24 2024