cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A023208 Primes p such that 3*p + 2 is also prime.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 59, 79, 83, 89, 97, 103, 127, 139, 149, 163, 167, 173, 197, 199, 227, 233, 239, 257, 269, 293, 313, 317, 337, 349, 353, 367, 383, 397, 409, 419, 433, 439, 457, 479, 499, 503, 523, 569, 577, 607, 643, 659, 709, 757, 769, 797, 859, 863
Offset: 1

Views

Author

Keywords

Comments

Also, son primes of order 1. For smallest son primes of order n see A136027 (also definition). For son primes of order 2 see A136082. - Artur Jasinski, Dec 12 2007

Crossrefs

Programs

  • Haskell
    a023208 n = a023208_list !! (n-1)
    a023208_list = filter ((== 1) . a010051 . (+ 2) . (* 3)) a000040_list
    -- Reinhard Zumkeller, Aug 15 2011
  • Magma
    [n: n in PrimesUpTo(900) | IsPrime(3*n+2)]; // Vincenzo Librandi, Nov 20 2010
    
  • Mathematica
    n = 1; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a (* Artur Jasinski, Dec 12 2007 *)
  • PARI
    isA023208(n) = isprime(n) && isprime(3*n+2) \\ Michael B. Porter, Jan 30 2010
    

Extensions

Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar

A136082 Son primes of order 5.

Original entry on oeis.org

3, 11, 17, 23, 41, 53, 59, 107, 131, 167, 173, 179, 191, 257, 263, 269, 389, 401, 431, 461, 467, 479, 521, 563, 569, 599, 647, 653, 677, 683, 719, 773, 821, 839, 857, 887, 947, 971, 1031, 1049, 1061, 1091, 1103, 1151, 1181, 1217, 1223, 1259, 1277, 1301
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235.
Numbers in this sequence are those primes p such that 11*p + 10 is also prime. Generally, son primes of order n are the primes p such that (2n+1)*p + 2n is also prime. - Bob Selcoe, Apr 04 2015

Crossrefs

Programs

  • Mathematica
    n = 5; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=10;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)
    Select[Prime[Range[250]],PrimeQ[11#+10]&] (* Harvey P. Dale, Aug 07 2021 *)

A136084 Son primes of order 7.

Original entry on oeis.org

3, 5, 11, 17, 23, 29, 31, 37, 43, 47, 53, 61, 67, 73, 83, 103, 107, 113, 131, 137, 139, 163, 173, 179, 181, 191, 193, 197, 199, 223, 229, 251, 269, 271, 281, 283, 293, 311, 353, 359, 367, 389, 401, 419, 421, 439, 443, 457, 463, 467, 499, 503, 509, 521, 547, 557
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083.

Crossrefs

Programs

  • Mathematica
    n = 7; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=14;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A136085 Son primes of order 8.

Original entry on oeis.org

3, 5, 29, 59, 71, 83, 101, 131, 149, 173, 239, 251, 281, 311, 401, 443, 449, 461, 491, 509, 563, 569, 653, 701, 719, 743, 761, 929, 953, 1109, 1151, 1193, 1223, 1259, 1289, 1301, 1373, 1451, 1511, 1553, 1571, 1583, 1613, 1619, 1811, 1913, 1931, 1949, 2039
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084.

Crossrefs

Programs

  • Mathematica
    n = 8; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=16;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A136086 Son primes of order 9.

Original entry on oeis.org

5, 7, 11, 19, 29, 31, 41, 47, 67, 71, 89, 97, 109, 137, 139, 151, 157, 167, 181, 197, 211, 241, 251, 271, 277, 307, 311, 337, 367, 379, 397, 409, 421, 509, 557, 571, 587, 599, 601, 607, 619, 631, 641, 659, 661, 691, 701, 719, 727, 757, 769, 797, 811, 827, 839
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085.

Crossrefs

Programs

  • Mathematica
    n = 9; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=18;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A136087 Son primes of order 10.

Original entry on oeis.org

3, 7, 11, 13, 19, 23, 37, 41, 59, 61, 67, 71, 73, 89, 101, 107, 109, 113, 127, 137, 139, 151, 167, 179, 181, 193, 197, 211, 223, 227, 239, 241, 257, 269, 271, 293, 311, 331, 347, 349, 353, 359, 367, 373, 409, 419, 421, 439, 443, 463, 479, 487, 491, 499, 509
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 8 see A136086.

Crossrefs

Programs

  • Mathematica
    n = 10; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
    q=20;lst={};Do[p=Prime[n];If[PrimeQ[(q+1)*p+q],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)

A136088 Son primes of order 11.

Original entry on oeis.org

5, 47, 83, 89, 113, 149, 167, 173, 179, 233, 239, 293, 383, 389, 443, 569, 587, 599, 683, 797, 839, 947, 1013, 1019, 1097, 1103, 1223, 1229, 1259, 1283, 1289, 1373, 1409, 1427, 1439, 1493, 1499, 1523, 1559, 1913, 1997, 2003, 2027, 2039, 2069, 2087, 2099
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 9 see A136086. For son primes of order 10 see A136086.

Crossrefs

Programs

  • Mathematica
    n = 11; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a

A136089 Son primes of order 12.

Original entry on oeis.org

5, 7, 13, 17, 19, 23, 41, 59, 61, 67, 79, 83, 101, 107, 109, 131, 137, 139, 163, 173, 181, 191, 199, 229, 233, 251, 257, 263, 277, 293, 307, 317, 347, 353, 359, 367, 373, 389, 397, 419, 431, 461, 467, 521, 523, 569, 577, 587, 607, 613, 653, 683, 691, 709, 727
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 9 see A136086. For son primes of order 10 see A136087. For son primes of order 11 see A136088.

Crossrefs

Programs

  • Mathematica
    n = 12; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a

A136090 Son primes of order 13.

Original entry on oeis.org

3, 23, 29, 31, 43, 59, 73, 83, 101, 109, 139, 149, 193, 199, 223, 233, 251, 263, 293, 311, 331, 359, 379, 389, 401, 409, 421, 433, 443, 449, 461, 463, 479, 499, 541, 563, 571, 601, 641, 643, 653, 739, 769, 773, 821, 823, 829, 839, 853, 863, 881, 911, 991, 1019
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 9 see A136086. For son primes of order 10 see A136087. For son primes of order 11 see A136088. For son primes of order 12 see A136088.

Crossrefs

Programs

  • Mathematica
    n = 13; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a

A136091 Son primes of order 14.

Original entry on oeis.org

5, 11, 17, 41, 71, 89, 101, 137, 149, 167, 197, 239, 251, 257, 269, 317, 347, 401, 431, 449, 461, 521, 569, 617, 641, 659, 677, 701, 719, 839, 881, 1031, 1049, 1091, 1109, 1277, 1289, 1367, 1427, 1439, 1487, 1499, 1571, 1601, 1637, 1667, 1721, 1847, 1871
Offset: 1

Views

Author

Artur Jasinski, Dec 12 2007

Keywords

Comments

For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084. For son primes of order 8 see A136085. For son primes of order 9 see A136086. For son primes of order 10 see A136087. For son primes of order 11 see A136088. For son primes of order 12 see A136089. For son primes of order 13 see A136090.

Crossrefs

Programs

  • Mathematica
    n = 14; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
Showing 1-10 of 15 results. Next