Original entry on oeis.org
1, -3, 31, -375, 5911, -113463, 2571031, -67170855, 1987919671, -65731585623, 2401646633431, -96089053104135, 4178215255335031, -196193483904124983, 9894077286353278231, -533334378459657706215, 30602112192036616407991
Offset: 2
-
{a(n)=n!* sum(i=0,n-1,(-1)^i*polcoeff(((exp(x+x*O(x^n))-1)^(2+i)),n)*binomial(2*i+2,i)/(2*i+2))}
for(n=2,20,print1(a(n),", "))
-
/* Define Stirling2: */
{Stirling2(n,k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!,n)}
/* Define Catalan(m,n) = [x^n] C(x)^m: */
{Catalan(m,n)=binomial(2*n+m,n)*m/(2*n+m)}
/* Define this sequence: */
{a(n)=sum(i=0,n-1,(-1)^i*(2+i)!*Stirling2(n,2+i)*Catalan(2,i)/2!)}
for(n=2,20,print1(a(n),", "))
Original entry on oeis.org
1, -6, 85, -1350, 26341, -603246, 15887845, -473148150, 15723174181, -576826897086, 23157022930405, -1009818279438150, 47533643556874021, -2402218856253008526, 129730266330534913765, -7455932648513351731350, 454377365410347843373861
Offset: 3
-
a(n)=n!/2!* sum(i=0,n-1,(-1)^i*polcoeff(((exp(x+x*O(x^n))-1)^(3+i)),n)*binomial(2*i+3,i)/(2*i+3))
-
/* Define Stirling2: */ {Stirling2(n,k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!,n)} /* Define Catalan(m,n) = [x^n] C(x)^m: */ {Catalan(m,n)=binomial(2*n+m,n)*m/(2*n+m)} /* Define this sequence: */ {a(n)=sum(i=0,n-1,(-1)^i*(3+i)!*Stirling2(n,3+i)*Catalan(3,i)/3!)}
A136588
a(n) = Sum_{k=0..n} A136595(n,k)*n^k.
Original entry on oeis.org
1, 1, 2, 21, 124, 1880, 20046, 391419, 6195288, 147481299, 3121373690, 87790122816, 2329580861268, 75790954533385, 2415630777959686, 89478235732836705, 3323789119614522416, 138402773923330655700
Offset: 0
-
{a(n)=sum(k=0,n,if(k==0,0^n,n^k*n!/(k-1)!* sum(i=0,n-1,(-1)^i*polcoeff(((exp(x+x*O(x^n))-1)^(k+i)),n)*binomial(2*i+k,i)/(2*i+k))))}
A136589
a(n) = Sum_{k=0..n} A136595(n,k)*(n+1)^k.
Original entry on oeis.org
1, 2, 6, 44, 345, 4182, 53571, 905144, 16154550, 349976610, 8015743483, 211987872516, 5925745900685, 185188128471374, 6108604964499810, 220403394009702384, 8375181440031684305, 342816825221831030490
Offset: 0
-
{a(n)=sum(k=0,n,if(k==0,0^n,(n+1)^k*n!/(k-1)!* sum(i=0,n-1,(-1)^i*polcoeff(((exp(x+x*O(x^n))-1)^(k+i)),n)*binomial(2*i+k,i)/(2*i+k))))}
A048287
Number of semiorders on n labeled nodes whose incomparability graph is connected.
Original entry on oeis.org
1, 1, 7, 61, 751, 11821, 226927, 5142061, 134341711, 3975839341, 131463171247, 4803293266861, 192178106208271, 8356430510670061, 392386967808249967, 19788154572706556461, 1066668756919315412431, 61204224384073232815981
Offset: 1
a(3)=7, the seven semiorders being three disjoint points and the disjoint union of a point and a two-element chain (with six labelings).
-
A048287 := n -> add((-1)^(n-k-1)*Stirling2(n,k+1)*(2*k)!/k!, k=0..n-1):
seq(A048287(n), n=1..18); # Peter Luschny, Jan 27 2016
-
Table[Sum[(-1)^(n - k) StirlingS2[n, k] k!*CatalanNumber[k - 1], {k, n}], {n, 20}] (* Michael De Vlieger, Jan 27 2016 *)
Rest[Range[0, 18]! CoefficientList[Series[1 - 2 (1 - Exp[-x]) /(1 - Sqrt[4 Exp[-x] - 3]), {x, 0, 18}], x]] (* Vincenzo Librandi, Jan 28 2016 *)
-
{a(n)=local(A136590=matrix(n+1,n+1,r,c,if(r>=c,(r-1)!/(c-1)!*polcoeff(log(1+x+x^2 +x*O(x^n))^(c-1),r-1))));(-1)^(n+1)*(A136590^-1)[n+1,2]} \\ Paul D. Hanna, Jan 10 2008
-
{a(n) = if( n<0, 0, n! * polcoeff( (1 - sqrt(4*exp(-x + x*O(x^n)) - 3)) / 2, n))}; /* Michael Somos, Nov 26 2017 */
-
{a(n) = if( n<1, 0, n! * polcoeff( serreverse( -log(1 - x + x^2 + x * O(x^n))), n))}; /* Michael Somos, Nov 26 2017 */
A136590
Triangle of trinomial logarithmic coefficients: A027907(n,k) = Sum_{i=0..k} T(k,i)*n^i/k!.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, -4, 3, 1, 0, 6, -13, 6, 1, 0, 24, -10, -25, 10, 1, 0, -240, 394, -135, -35, 15, 1, 0, 720, -2016, 1834, -525, -35, 21, 1, 0, 5040, -5076, -3668, 5089, -1400, -14, 28, 1, 0, -80640, 170064, -110692, 14364, 9849, -3024, 42, 36, 1, 0, 362880, -1155024, 1339020, -672400, 118125, 12873, -5670, 150, 45, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, -4, 3, 1;
0, 6, -13, 6, 1;
0, 24, -10, -25, 10, 1;
0, -240, 394, -135, -35, 15, 1;
0, 720, -2016, 1834, -525, -35, 21, 1;
0, 5040, -5076, -3668, 5089, -1400, -14, 28, 1;
0, -80640, 170064, -110692, 14364, 9849, -3024, 42, 36, 1;
0, 362880, -1155024, 1339020, -672400, 118125, 12873, -5670, 150, 45, 1; ...
Trinomial coefficients can be calculated as illustrated by:
A027907(4,3) = (T(3,0)*4^0 + T(3,1)*4^1 + T(3,2)*4^2 + T(3,3)*4^3)/3! =
(0 - 4*4 + 3*4^2 + 1*4^3)/3! = 96/6 = 16.
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> n!*(modp(n+1,3)-modp(n,3)), 9); # Peter Luschny, Jan 27 2016
-
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 11;
M = BellMatrix[#!*(Mod[# + 1, 3] - Mod[#, 3])&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
{T(n,k)=n!/k!*polcoeff(log(1+x+x^2 +x*O(x^n))^k,n)}
for(n=0,10, for(k=0,n, print1( T(n,k),", "));print(""))
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: A136591(n+1), 10) # Peter Luschny, Jan 18 2016
Showing 1-6 of 6 results.
Comments