cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137882 Number of (directed) Hamiltonian paths in the n-ladder graph.

Original entry on oeis.org

2, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516, 5728, 5944, 6164, 6388, 6616, 6848, 7084, 7324, 7568, 7816
Offset: 1

Views

Author

Eric W. Weisstein, Feb 20 2008

Keywords

Crossrefs

Programs

  • Maple
    A137882:=n->2*(n^2-n+2): 2,seq(A137882(n), n=2..100); # Wesley Ivan Hurt, Apr 25 2017
  • Mathematica
    CoefficientList[Series[2*x*(1 + x - x^2 + x^3)/(1 - x)^3, {x,0,50}], x] (* G. C. Greubel, Apr 25 2017 *)
    LinearRecurrence[{3,-3,1},{2,8,16,28},70] (* Harvey P. Dale, Nov 15 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec(2*x*(1 + x - x^2 + x^3)/(1 - x)^3) \\ G. C. Greubel, Apr 25 2017

Formula

For n>2, m = p^3*q (p,q = primes), a(n) = Sum_{d|m} (n-1)^(bigomega(d) - omega(d)) = Sum_{d|m} (n-1)^(A001222(d) - A001221(d)). - Jaroslav Krizek, Sep 24 2009
For n>1, a(n) = 2*(n^2 - n + 2); first diagonal of A154685. - Vincenzo Librandi, Nov 24 2010
G.f.: 2*x*(1+x-x^2+x^3)/(1-x)^3. - Colin Barker, Jan 20 2012
Sum_{n>=1} 1/a(n) = 1/4 + Pi*tanh(sqrt(7)*Pi/2)/(2*sqrt(7)). - Amiram Eldar, Dec 23 2022
From Elmo R. Oliveira, Jun 06 2025: (Start)
E.g.f.: 2*(exp(x)*(2 + x^2) - (2 + x)).
a(n) = 2*A003682(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4. (End)

Extensions

Extended and formula corrected by Max Alekseyev, Apr 11 2009
Corrected the formula which was confusing offsets - R. J. Mathar, Jun 04 2010