A137882 Number of (directed) Hamiltonian paths in the n-ladder graph.
2, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516, 5728, 5944, 6164, 6388, 6616, 6848, 7084, 7324, 7568, 7816
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Ladder Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
A137882:=n->2*(n^2-n+2): 2,seq(A137882(n), n=2..100); # Wesley Ivan Hurt, Apr 25 2017
-
Mathematica
CoefficientList[Series[2*x*(1 + x - x^2 + x^3)/(1 - x)^3, {x,0,50}], x] (* G. C. Greubel, Apr 25 2017 *) LinearRecurrence[{3,-3,1},{2,8,16,28},70] (* Harvey P. Dale, Nov 15 2018 *)
-
PARI
my(x='x+O('x^50)); Vec(2*x*(1 + x - x^2 + x^3)/(1 - x)^3) \\ G. C. Greubel, Apr 25 2017
Formula
For n>2, m = p^3*q (p,q = primes), a(n) = Sum_{d|m} (n-1)^(bigomega(d) - omega(d)) = Sum_{d|m} (n-1)^(A001222(d) - A001221(d)). - Jaroslav Krizek, Sep 24 2009
For n>1, a(n) = 2*(n^2 - n + 2); first diagonal of A154685. - Vincenzo Librandi, Nov 24 2010
G.f.: 2*x*(1+x-x^2+x^3)/(1-x)^3. - Colin Barker, Jan 20 2012
Sum_{n>=1} 1/a(n) = 1/4 + Pi*tanh(sqrt(7)*Pi/2)/(2*sqrt(7)). - Amiram Eldar, Dec 23 2022
From Elmo R. Oliveira, Jun 06 2025: (Start)
E.g.f.: 2*(exp(x)*(2 + x^2) - (2 + x)).
a(n) = 2*A003682(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4. (End)
Extensions
Extended and formula corrected by Max Alekseyev, Apr 11 2009
Corrected the formula which was confusing offsets - R. J. Mathar, Jun 04 2010