cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138288 a(n) = A054320(n) - A001078(n).

Original entry on oeis.org

1, 9, 89, 881, 8721, 86329, 854569, 8459361, 83739041, 828931049, 8205571449, 81226783441, 804062262961, 7959395846169, 78789896198729, 779939566141121, 7720605765212481, 76426118085983689, 756540575094624409, 7488979632860260401, 74133255753507979601, 733843577902219535609
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 12 2008

Keywords

Comments

Numbers k such that 6*k^2 - 2 is a square. - Bruno Berselli, Feb 10 2014

Examples

			1 + 9*x + 89*x^2 + 881*x^3 + 8721*x^4 + 86329*x^5 + ...
		

References

  • H. Brocard, Note #2049, L'Intermédiaire des Mathématiciens, 8 (1901), pp. 212-213. - N. J. A. Sloane, Mar 02 2022

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 10 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    a[c_, n_] := Module[{},
      p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
      d := Denominator[Convergents[Sqrt[c], n p]];
      t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
      Return[t];
      ] (* Complement of A041007, A041039 *)
    a[6, 20] (* Gerry Martens, Jun 07 2015 *)
  • PARI
    {a(n) = subst( poltchebi(n+1) + poltchebi(n), x, 5) / 6} /* Michael Somos, Jan 25 2013 */
  • Sage
    [lucas_number1(n,10,1)-lucas_number1(n-1,10,1) for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = A072256(n+1).
a(n) = A001079(n) + 2*A001078(n).
a(n) = 10*a(n-1) - a(n-2). a(-1) = a(0) = 1.
(sqrt(2)+sqrt(3))^(2*n+1) = A054320(n-1)*sqrt(2) + a(n)*sqrt(3).
From Michael Somos, Jan 25 2013: (Start)
G.f.: (1 - x) / (1 - 10*x + x^2).
a(-1-n) = a(n). (End)
a(n) = sqrt(2+(5-2*sqrt(6))^(1+2*n)+(5+2*sqrt(6))^(1+2*n))/(2*sqrt(3)). - Gerry Martens, Jun 04 2015
E.g.f.: exp(5*x)*(3*cosh(2*sqrt(6)*x) + sqrt(6)*sinh(2*sqrt(6)*x))/3. - Stefano Spezia, May 16 2023