cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A138395 a(n) = 6*a(n-1) - 3*a(n-2), a(1) = 1, a(2) = 6.

Original entry on oeis.org

1, 6, 33, 180, 981, 5346, 29133, 158760, 865161, 4714686, 25692633, 140011740, 762992541, 4157920026, 22658542533, 123477495120, 672889343121, 3666903573366, 19982753410833, 108895809744900, 593426598236901, 3233872160186706, 17622953166409533
Offset: 1

Views

Author

Gary W. Adamson, Mar 19 2008

Keywords

Comments

a(n) equals the number of words of length n-1 over {0,1,2,3,4,5} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015

Examples

			a(5) = 981 = 6*a(4) - 3*a(3) = 6*180 - 3*33.
		

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 6*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
    
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,5}},n].{{1},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{6,-3},{1,6},30] (* Harvey P. Dale, Jan 18 2012 *)
  • PARI
    Vec(1/(1-6*x+3*x^2) + O(x^100)) \\ Altug Alkan, Dec 17 2015
    
  • SageMath
    A138395=BinaryRecurrenceSequence(6,-3,0,1)
    [A138395(n) for n in range(1,30)] # G. C. Greubel, Jan 10 2024

Formula

Limit_{n->oo} a(n)/a(n-1) = 3 + sqrt(6) = 5.44948974...
a(n) = ((3+sqrt(6))^n - (3-sqrt(6))^n)/(2*sqrt(6)). - Alexander R. Povolotsky, Apr 01 2008
a(n) = lower left term of n-th power of 2 X 2 matrix [1,2; 1,5].
G.f.: 1/(1 - 6*x + 3*x^2). - Philippe Deléham, Sep 09 2009
a(n) = Chebyshev_U(n, sqrt(3))*(sqrt(3))^n. - Paul Barry, Sep 28 2009

Extensions

More terms from Philippe Deléham, Sep 09 2009
a(21) and first formula corrected by Klaus Brockhaus, Oct 05 2009
Extended by T. D. Noe, May 23 2011