A138897 Ratio of (2n-1)! to number of zeros in upper part of Sylvester matrix of polynomial of degree n with all nonzero coefficients.
3, 20, 420, 18144, 1330560, 148262400, 23351328000, 4940103168000, 1351612226764800, 464463110651904000, 195848611658219520000, 99430833611096064000000, 59828953024276660224000000, 42103628541617628354969600000, 34261827725741345073856512000000, 31923961833867229762934538240000000
Offset: 2
Keywords
Programs
-
Maple
A138897:=n->(2*n - 1)!/(n*(n - 1)): seq(A138897(n), n=2..20); # Wesley Ivan Hurt, Nov 25 2017
-
Mathematica
Table[(2 n - 1)!/(n (n - 1)), {n, 2, 20}]
-
PARI
a(n) = (2*n - 1)!/(n*(n - 1)); \\ Michel Marcus, Oct 28 2017
Formula
a(n) = (2n - 1)!/(n*(n - 1)).
Sum_{n>=2} 1/a(n) = (1 + e^2)/(8*e) = 0.38577015870381094461947640518926542... . - Stefano Spezia, Jul 27 2024
Sum_{n>=2} (-1)^n/a(n) = (2*sin(1) - cos(1))/4. - Amiram Eldar, Aug 19 2025
Extensions
More terms from Michel Marcus, Oct 28 2017
Comments