cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A089085 Numbers k such that (k! + 3)/3 is prime.

Original entry on oeis.org

3, 5, 6, 8, 11, 17, 23, 36, 77, 93, 94, 109, 304, 497, 1330, 1996, 3027, 3053, 4529, 5841, 20556, 26558, 28167
Offset: 1

Views

Author

Cino Hilliard, Dec 05 2003

Keywords

Comments

a(21) > 20000. The PFGW program has been used to certify all the terms up to a(20), using the "N-1" deterministic test. - Giovanni Resta, Mar 31 2014

Crossrefs

Cf. A089131.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

Extensions

More terms from Don Reble, Dec 06 2003
1330 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Typo in Mma program corrected by Vincenzo Librandi, Dec 12 2011
a(16)-a(20) from Giovanni Resta, Mar 31 2014
a(21)-a(23) from Serge Batalov, Feb 17 2015

A082672 Numbers n such that (n! + 2)/2 is a prime.

Original entry on oeis.org

2, 4, 5, 7, 8, 13, 16, 30, 43, 49, 91, 119, 213, 1380, 1637, 2258, 4647, 9701, 12258
Offset: 1

Views

Author

Cino Hilliard, May 18 2003

Keywords

Crossrefs

Cf. A089130.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

  • Magma
    [ n: n in [1..300] | IsPrime((Factorial(n)+2) div 2) ];
  • Mathematica
    Select[Range[10^2], PrimeQ[(#!+2)/2] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
  • PARI
    \\ x such that (x!+2)/2 is prime
    xfactpk(n,k=2) = { for(x=2,n, y = (x!+k)/k; if(isprime(y),print1(x, ", ")) ) }
    

Extensions

More terms from Don Reble, Dec 08 2003
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008

A139056 Numbers k for which (k!-3)/3 is prime.

Original entry on oeis.org

4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

Corresponding primes (k!-3)/3 are in A139057.
a(13) > 10000. The PFGW program has been used to certify all the terms up to a(12), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
98166 is a member of the sequence but its index is not yet determined. The interval where sieving and tests were not run is [60000,90000]. - Serge Batalov, Feb 24 2015

Crossrefs

Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. m*n!-1 is a prime: A076133, A076134, A099350, A099351, A180627-A180631.
Cf. m*n!+1 is a prime: A051915, A076679-A076683, A178488, A180626, A126896.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
  • PARI
    for(n=1,1000,if(floor(n!/3-1)==n!/3-1,if(ispseudoprime(n!/3-1),print(n)))) \\ Derek Orr, Mar 28 2014

Extensions

Definition corrected by Derek Orr, Mar 28 2014
a(8)-a(11) from Derek Orr, Mar 28 2014
a(12) from Giovanni Resta, Mar 28 2014
a(13)-a(14) from Serge Batalov, Feb 24 2015

A137390 Numbers k for which (9 + k!)/9 is prime.

Original entry on oeis.org

8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
Offset: 1

Views

Author

Artur Jasinski, Apr 09 2008

Keywords

Comments

No other k exists, for k <= 6000. - Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
The next number in the sequence, if one exists, is greater than 10944. - Robert Price, Mar 16 2010
Borrowing from A139074 another term in this sequence is 26737. There may be others between 10944 and 26737. - Robert Price, Dec 13 2011
There are no other terms for k < 26738. - Robert Price, Feb 10 2012

Examples

			a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
		

Crossrefs

Cf. A139068 (primes of the form (9 + k!)/9).
Cf. k!/m - 1 is a prime: A002982, A082671, A139056, A139199-A139205.
Cf. (m + k!)/m is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A139071.

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(n=6,1e4,if(ispseudoprime(n!/9+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PFGW
    ABC2 $a!/9+1
    a: from 6 to 1000 // Jinyuan Wang, Feb 04 2020

Extensions

Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
a(10) corrected from 1053 to 1056 by Dmitry Kamenetsky, Jul 12 2008
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
a(12)-a(13) from Robert Price, Feb 10 2012

A139066 Primes of the form (8+k!)/8.

Original entry on oeis.org

631, 45361, 453601, 59875201, 10897286401, 304112751022080001, 3231502092360622080001, 77556050216654929920001, 1105220249217462744317952000001, 332283946848556096005453226376826986289954816000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For numbers k for which (8+k!)/8 is prime see A151913.
The next term (a(11)) has 174 digits. - Harvey P. Dale, May 10 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 8)/8], AppendTo[a, (n! + 8)/8]], {n, 1, 50}]; a
    Select[(8+Range[50]!)/8,PrimeQ] (* Harvey P. Dale, May 10 2016 *)
  • PARI
    for(k=4,1e3,if(ispseudoprime(t=k!/8+1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A139155(A151913(n)). - Amiram Eldar, Oct 14 2024

Extensions

Corrected link to sequence of indexes. - Serge Batalov, Feb 17 2015
a(10) from Harvey P. Dale, May 10 2016

A139068 Primes of the form k!/9 + 1.

Original entry on oeis.org

4481, 611402462201343216650033936533361654773516861440000000001, 234195255375503079690400057633265510581087082006817356924774723468294901747510352675631491470712754833859385753600000000000000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For numbers k for which (9+k!)/9 is prime see A137390.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, (n! + 9)/9]], {n, 1, 150}]; a
    Select[Range[100]!/9+1,PrimeQ] (* Harvey P. Dale, Aug 17 2017 *)
  • PARI
    for(n=6,1e4,if(ispseudoprime(t=n!/9+1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A139156(A137390(n)). - Amiram Eldar, Oct 14 2024

A139070 Primes of the form (10+k!)/10.

Original entry on oeis.org

13, 73, 3991681, 47900161, 130767436801, 2585201673888497664001, 40329146112660563558400001, 1376375309122634504631597958158090240000001, 11962222086548019456196316149565771506438373376000000001
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For numbers k for which (10+k!)/10 is prime see A139071.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 10)/10], AppendTo[a, (n! + 10)/10]], {n, 1, 50}]; a
    Select[(Range[50]!+10)/10,PrimeQ] (* Harvey P. Dale, Sep 18 2013 *)
  • PARI
    for(k=5,1e3,if(ispseudoprime(t=k!/10+1),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = A139157(A139071(n)). - Amiram Eldar, Oct 14 2024

A139058 Numbers n such that (5+n!)/5 is prime.

Original entry on oeis.org

7, 9, 11, 14, 19, 23, 45, 121, 131, 194, 735, 751, 1316, 1372, 2084, 2562, 5678, 5758, 12533, 24222
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (5+n!)/5 see A139059.
a(21) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Cf. A139059.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

  • Magma
    [ n: n in [5..734] | IsPrime((Factorial(n)+5) div 5) ];
    
  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 5)/5], AppendTo[a, n]], {n, 1, 751}]; a
  • PARI
    A139058(n) = local(k=(n!+5)\5); if(isprime(k), k, 0);
    for(n=5, 800, if(A139058(n)>0, print1(n, ", ")))

Extensions

More terms from Serge Batalov, Feb 18 2015
a(19)-a(20) from Robert Price, Nov 20 2016

A139061 Numbers n for which (4+n!)/4 is prime.

Original entry on oeis.org

4, 5, 6, 13, 21, 25, 32, 40, 61, 97, 147, 324, 325, 348, 369, 1290, 1342, 3167, 6612, 8176, 10990
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (4+k!)/4, see A139060.
a(22) > 25000. - Robert Price, Jan 10 2017

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, n]], {n, 1, 500}]; a
    Select[Range[500],PrimeQ[(4+#!)/4]&]  (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    for(n=4,1e3,if(ispseudoprime(n!/4+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(19) - a(21) from Robert Price, Jan 10 2017

A139065 Numbers k for which (7+k!)/7 is prime.

Original entry on oeis.org

11, 15, 16, 25, 35, 59, 64, 68, 82, 121, 149, 238, 584, 912, 3349, 4111, 4324, 15314, 19944, 20658, 22740, 23364
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (7+k!)/7, see A139064.
a(23) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 7)/7], AppendTo[a, n]], {n, 1, 500}]; a
    Select[Range[500],PrimeQ[(7+#!)/7]&] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    for(k=7,1e3,if(ispseudoprime(k!/7+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(18)-a(22) from Robert Price, Nov 20 2016
Showing 1-10 of 24 results. Next