cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A129271 Number of labeled n-node connected graphs with at most one cycle.

Original entry on oeis.org

1, 1, 1, 4, 31, 347, 4956, 85102, 1698712, 38562309, 980107840, 27559801736, 849285938304, 28459975589311, 1030366840792576, 40079074477640850, 1666985134587145216, 73827334760713500233, 3468746291121007607808, 172335499299097826575564, 9027150377126199463936000
Offset: 0

Views

Author

Washington Bomfim, May 10 2008

Keywords

Comments

The majority of those graphs of order 4 are trees since we have 16 trees and only 9 unicycles. See example.
Also connected graphs covering n vertices with at most n edges. The unlabeled version is A005703. - Gus Wiseman, Feb 19 2024

Examples

			a(4) = 16 + 3*3 = 31.
From _Gus Wiseman_, Feb 19 2024: (Start)
The a(0) = 1 through a(3) = 4 graph edge sets:
  {}  .  {{1,2}}  {{1,2},{1,3}}
                  {{1,2},{2,3}}
                  {{1,3},{2,3}}
                  {{1,2},{1,3},{2,3}}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Dover, 2002, p. 2.

Crossrefs

For any number of edges we have A001187, unlabeled A001349.
The unlabeled version is A005703.
The case of equality is A057500, covering A370317, cf. A370318.
The non-connected non-covering version is A133686.
The connected complement is A140638, unlabeled A140636, covering A367868.
The non-connected covering version is A367869 or A369191.
The version with loops is A369197, non-connected A369194.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A062734 counts connected graphs by number of edges.

Programs

  • Maple
    a := n -> `if`(n=0,1,((n-1)*exp(n)*GAMMA(n-1,n)+n^(n-2)*(3-n))/2):
    seq(simplify(a(n)),n=0..16); # Peter Luschny, Jan 18 2016
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[ Log[1/(1-t)]/2+t/2-3t^2/4+1,{x,0,nn}],x]  (* Geoffrey Critzer, Mar 23 2013 *)
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(log(1/(1-t))/2 + t/2 - 3*t^2/4 + 1))} \\ Andrew Howroyd, Nov 07 2019

Formula

a(0) = 1, for n >=1, a(n) = A000272(n) + A057500(n) = n^{n-2} + (n-1)(n-2)/2Sum_{r=1..n-2}( (n-3)!/(n-2-r)! )n^(n-2-r)
E.g.f.: log(1/(1-T(x)))/2 + T(x)/2 - 3*T(x)^2/4 + 1, where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Mar 23 2013
a(n) = ((n-1)*e^n*GAMMA(n-1,n)+n^(n-2)*(3-n))/2 for n>=1. - Peter Luschny, Jan 18 2016

Extensions

Terms a(17) and beyond from Andrew Howroyd, Nov 07 2019

A367869 Number of labeled simple graphs covering n vertices and satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5596, 97149, 1959938, 44956945, 1154208544, 32772977715, 1019467710328, 34473686833527, 1259038828370402, 49388615245426933, 2070991708598960524, 92445181295983865757, 4376733266230674345874, 219058079619119072854095, 11556990682657196214302036
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Number of labeled n-node graphs with at most one cycle in each component and no isolated vertices. - Andrew Howroyd, Dec 30 2023

Examples

			The a(3) = 4 graphs:
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

The connected case is A129271.
The non-covering case is A133686, complement A367867.
The complement is A367868, connected A140638 (unlabeled A140636).
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(sqrt(1/(1-t))*exp(t/2 - 3*t^2/4 - x)))} \\ Andrew Howroyd, Dec 30 2023

Formula

E.g.f.: exp(B(x) - x - 1) where B(x) is the e.g.f. of A129271. - Andrew Howroyd, Dec 30 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 30 2023

A367868 Number of labeled simple graphs covering n vertices and contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 0, 7, 381, 21853, 1790135, 250562543, 66331467215, 34507857686001, 35645472109753873, 73356936892660012513, 301275024409580265134121, 2471655539736293803311467943, 40527712706903494712385171632959, 1328579255614092966328511889576785109
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(4) = 7 graphs:
  {{1,2},{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{3,4}}
  {{1,2},{1,3},{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A140638, unlabeled A140636.
The non-covering case is A367867.
The complement is A367869, connected A129271, non-covering A133686.
The version for set-systems is A367903, ranks A367907.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Select[Tuples[#], UnsameQ@@#&]=={}&]],{n,0,5}]

Formula

a(n) = A006129(n) - A367869(n). - Andrew Howroyd, Dec 30 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 30 2023

A140637 Number of unlabeled graphs of positive excess with n nodes.

Original entry on oeis.org

0, 0, 0, 2, 15, 110, 936, 12073, 273972, 12003332, 1018992968, 165091159269, 50502031331411, 29054155657134165, 31426485969804026075, 64001015704527557101231, 245935864153532932681481794, 1787577725145611700547871854870, 24637809253125004524383007473440146
Offset: 1

Views

Author

Washington Bomfim, May 21 2008

Keywords

Comments

We can find in "The Birth of the Giant Component" p. 53, see the link, the following: "The excess of a graph or multigraph is the number of edges plus the number of acyclic components, minus the number of vertices."
If G has just one complex component with 4 nodes, the "non-complex part" of G can be,
a) One forest of order 4. There are 6 forests, so 2*6=12 graphs.
b) One triangle and one isolated vertex, or 2*1=2 graphs.
c) One unicyclic graph of order 4, so 2*2=4 graphs.
Also the number of unchoosable unlabeled graphs with up to n vertices, where a graph is choosable iff it is possible to choose a different vertex from each edge. The labeled version is A367867, covering A367868, connected A140638. - Gus Wiseman, Feb 13 2024

Examples

			Below we show that a(8) = 12073. Note that A140636(n) is the number of connected graphs of positive excess with n nodes.
Let G be a disconnected graph of positive excess with 8 nodes. In this case, G has one or two complex components. We have 3 graphs of order 8 with two complex components. One of those graphs is depicted in the figure below:
  O---O...O---O
  |\..|...|\./|
  |.\.|...|.X.|
  |..\|...|/.\|
  O---O...O---O
If G has one complex component with 5 nodes, the non-complex part of G can be,
a) One forest of order 3. There are 3 forests, so A140636(5) * 3 = 39 graphs.
b) One triangle, so A140636(5) = 13 graphs.
If G has one complex component with 6 nodes, the non-complex part of G is a forest of order 2. There are 2 forests. We have A140636(6) * 2, or 186 graphs.
If G has one complex component with 7 nodes, the non-complex part of G is one isolated vertex. We have A140636(7), or 809 graphs.
Finally if G is connected, we have A140636(8), or 11005 graphs.
The total is 3 + 12 + 2 + 4 + 39 + 13 + 186 + 809 + 11005 = 12073.
		

Crossrefs

The labeled complement is A133686, covering A367869, connected A129271.
The complement is A134964, connected A005703.
The connected covering case is A140636.
The labeled version is A367867, covering A367868, connected A140638.
Set-systems not of this type are A367902, ranks A367906.
Set-systems of this type are A367903, ranks A367907.
For set-systems we have A368094, complement A368095.
For multiset partitions we have A368097, complement A368098.
Factorizations of this type are A368413, complement A368414.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,5}] (* Gus Wiseman, Feb 14 2024 *)

Formula

a(n) = A000088(n) - A134964(n).

A005703 Number of n-node connected graphs with at most one cycle.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 19, 44, 112, 287, 763, 2041, 5577, 15300, 42419, 118122, 330785, 929469, 2621272, 7411706, 21010378, 59682057, 169859257, 484234165, 1382567947, 3952860475, 11315775161, 32430737380, 93044797486, 267211342954, 768096496093, 2209772802169
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of pseudotrees on n nodes. - Eric W. Weisstein, Jun 11 2012
Also unlabeled connected graphs covering n vertices with at most n edges. For this definition we have a(1) = 0 and possibly a(0) = 0. - Gus Wiseman, Feb 20 2024

Examples

			From _Gus Wiseman_, Feb 20 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 8 graphs:
  {}  .  {12}  {12,13}     {12,13,14}     {12,13,14,15}
               {12,13,23}  {12,13,24}     {12,13,14,25}
                           {12,13,14,23}  {12,13,24,35}
                           {12,13,24,34}  {12,13,14,15,23}
                                          {12,13,14,23,25}
                                          {12,13,14,23,45}
                                          {12,13,14,25,35}
                                          {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000055, A000081, A001429 (labeled A057500), A134964 (number of pseudoforests, labeled A133686).
The labeled version is A129271.
The connected complement is A140636, labeled A140638.
Non-connected: A368834 (labeled A367869) or A370316 (labeled A369191).
A001187 counts connected graphs, unlabeled A001349.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A062734 counts connected graphs by number of edges.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn = 20; t[x_] := Sum[a[n] x^n, {n, 1, nn}];
    a[0] = 0;
    b = Drop[Flatten[
        sol = SolveAlways[
          0 == Series[
            t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}],
          x]; Table[a[n], {n, 0, nn}] /. sol], 1];
    r[x_] := Sum[b[[n]] x^n, {n, 1, nn}]; c =
    Drop[Table[
        CoefficientList[
         Series[CycleIndex[DihedralGroup[n], s] /.
           Table[s[i] -> r[x^i], {i, 1, n}], {x, 0, nn}], x], {n, 3,
         nn}] // Total, 1];
    d[x_] := Sum[c[[n]] x^n, {n, 1, nn}]; CoefficientList[
    Series[r[x] - (r[x]^2 - r[x^2])/2 + d[x] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Nov 17 2014 *)
  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(1 + g(1) + (g(2) - g(1)^2)/2 + sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2)}; \\ Andrew Howroyd and Washington Bomfim, May 15 2021

Formula

a(n) = A000055(n) + A001429(n).

Extensions

More terms from Vladeta Jovovic, Apr 19 2000 and from Michael Somos, Apr 26 2000
a(27) corrected and a(28) and a(29) computed by Washington Bomfim, May 14 2008

A140638 Number of connected graphs on n labeled nodes that contain at least two cycles.

Original entry on oeis.org

0, 0, 0, 7, 381, 21748, 1781154, 249849880, 66257728763, 34495508486976, 35641629989151608, 73354595357480683904, 301272202621204113362497, 2471648811029413368450098688, 40527680937730440155535277704046, 1328578958335783199341353852258282496
Offset: 1

Views

Author

Washington Bomfim, May 21 2008

Keywords

Comments

These are the connected graphs that are neither trees nor unicyclic.
Also connected non-choosable graphs covering n vertices, where a graph is choosable iff it is possible to choose a different vertex from each edge. The unlabeled version is A140636. The complement is counted by A129271. - Gus Wiseman, Feb 20 2024

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Dover, 2002, p. 2.

Crossrefs

The unlabeled version is A140636.
Cf. A000272 (trees), A001187 (connected graphs), A057500 (connected unicyclic graphs).
The complement is counted by A129271, unlabeled A005703.
The non-connected complement is A133686, covering A367869.
The non-connected version is A367867, unlabeled A140637.
The non-connected covering version is A367868.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,5}] (* Gus Wiseman, Feb 19 2024 *)
  • PARI
    seq(n)={my(A=O(x*x^n), t=-lambertw(-x + A)); Vec(serlaplace( log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, A)) - log(1/(1-t))/2 - t/2 + 3*t^2/4), -n)} \\ Andrew Howroyd, Jan 15 2022

Formula

a(n) = A001187(n) - A129271(n).
a(n) = A001187(n) - A000272(n) - A057500(n).

Extensions

Definition clarified by Andrew Howroyd, Jan 15 2022

A368409 Number of non-isomorphic connected set-systems of weight n contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 5, 16, 41, 130
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(4) = 1 through a(8) = 16 set-systems:
  {1}{2}{12}  .  {1}{2}{13}{23}  {1}{3}{23}{123}    {1}{5}{15}{2345}
                 {1}{2}{3}{123}  {1}{4}{14}{234}    {2}{13}{23}{123}
                 {2}{3}{13}{23}  {2}{3}{23}{123}    {3}{13}{23}{123}
                                 {3}{12}{13}{23}    {3}{4}{34}{1234}
                                 {1}{2}{3}{13}{23}  {1}{2}{13}{24}{34}
                                                    {1}{2}{3}{14}{234}
                                                    {1}{2}{3}{23}{123}
                                                    {1}{2}{3}{4}{1234}
                                                    {1}{3}{4}{14}{234}
                                                    {2}{3}{12}{13}{23}
                                                    {2}{3}{13}{24}{34}
                                                    {2}{3}{14}{24}{34}
                                                    {2}{3}{4}{14}{234}
                                                    {2}{4}{13}{24}{34}
                                                    {3}{4}{13}{24}{34}
                                                    {3}{4}{14}{24}{34}
		

Crossrefs

For unlabeled graphs we have A140636, connected case of A140637.
For labeled graphs: A140638, connected case of A367867 (complement A133686).
This is the connected case of A368094.
The complement is A368410, connected case of A368095.
Allowing repeats: A368411, connected case of A368097, ranks A355529.
Complement with repeats: A368412, connected case of A368098, ranks A368100.
Allowing repeat edges only: connected case of A368421 (complement A368422).
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2, {#1}]&,#]]&/@IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]

A369202 Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 2, 13, 95, 826, 11137, 261899, 11729360, 1006989636, 164072166301, 50336940172142, 29003653625802754, 31397431814146891910, 63969589218557753075156, 245871863137828405124380563, 1787331789281458167615190373076, 24636021675399858912682459601585276
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Comments

These are simple graphs covering n vertices such that some connected component has at least two cycles.

Examples

			Representatives of the a(4) = 2 and a(5) = 13 simple graphs:
  {12}{13}{14}{23}{24}      {12}{13}{14}{15}{23}{24}
  {12}{13}{14}{23}{24}{34}  {12}{13}{14}{15}{23}{45}
                            {12}{13}{14}{23}{24}{35}
                            {12}{13}{14}{23}{25}{45}
                            {12}{13}{14}{25}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}
                            {12}{13}{14}{15}{23}{24}{34}
                            {12}{13}{14}{15}{23}{24}{35}
                            {12}{13}{14}{23}{24}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}{34}
                            {12}{13}{14}{15}{23}{24}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}{34}{35}
                            {12}{13}{14}{15}{23}{24}{25}{34}{35}{45}
		

Crossrefs

Without the choice condition we have A002494, labeled A006129.
The connected case is A140636.
This is the covering case of A140637, complement A134964.
The labeled version is A367868, complement A367869.
The complement is counted by A368834.
The version with loops is A369147, complement A369200.
A005703 counts unlabeled connected choosable simple graphs, labeled A129271.
A007716 counts unlabeled multiset partitions, connected A007718.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A283877 counts unlabeled set-systems, connected A300913.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,5}]

Formula

First differences of A140637.
a(n) = A002494(n) - A368834(n).
Showing 1-8 of 8 results.