A140657 Powers of 2 with 3 alternatingly added and subtracted.
4, -1, 7, 5, 19, 29, 67, 125, 259, 509, 1027, 2045, 4099, 8189, 16387, 32765, 65539, 131069, 262147, 524285, 1048579, 2097149, 4194307, 8388605, 16777219, 33554429, 67108867, 134217725, 268435459, 536870909, 1073741827, 2147483645, 4294967299, 8589934589
Offset: 0
Links
- Jean-François Alcover and Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (first 101 terms from Jean-François Alcover)
- Index entries for linear recurrences with constant coefficients, signature (1, 2).
Programs
-
Magma
[2^n+3*(-1)^n: n in [0..40]]; // Vincenzo Librandi, Aug 08 2011
-
Mathematica
LinearRecurrence[{1,2},{4,-1},40] (* or *) Total/@Partition[Riffle[ Table[ 2^n, {n,0,40}],{3,-3}],2] (* Harvey P. Dale, Nov 13 2014 *) CoefficientList[Series[(4 - 5 x) / ((1 + x) (1 - 2 x)), {x, 0, 50}], x] (* Vincenzo Librandi, Jan 14 2015 *)
Formula
a(n) + a(n+1) = 3^*2^n = A007283(n).
a(2n) + a(2n+1) = A096045(n) + 2.
a(-n) = -A140683(n)/2^n.
O.g.f.: (4-5*x)/((1-2*x)(1+x)). - R. J. Mathar, Jul 29 2008
a(n) = 2^n+3*(-1)^n. - R. J. Mathar , Jul 29 2008
Extensions
Edited and extended by R. J. Mathar, Jul 29 2008
4 inserted as first term and formulas accordingly updated by Jean-François Alcover, Jan 14 2015
Comments