A140811 a(n) = 6*n^2 - 1.
-1, 5, 23, 53, 95, 149, 215, 293, 383, 485, 599, 725, 863, 1013, 1175, 1349, 1535, 1733, 1943, 2165, 2399, 2645, 2903, 3173, 3455, 3749, 4055, 4373, 4703, 5045, 5399, 5765, 6143, 6533, 6935, 7349, 7775, 8213, 8663, 9125, 9599, 10085, 10583, 11093, 11615
Offset: 0
References
- P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Note 12, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969, 132 pages, pp. 28-36. CCSA, then CELAR. Now DGA Maitrise de l'Information 35131 Bruz.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Leo Tavares, Illustration: Barred Stars.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[6*n^2 - 1: n in [0..50]]; // Vincenzo Librandi, Jun 02 2011
-
Mathematica
LinearRecurrence[{3,-3,1},{-1,5,23},40] (* Vincenzo Librandi, Feb 05 2012 *) CoefficientList[Series[(1-8*x-5*x^2)/(x-1)^3 , {x, 0, 40}], x] (* Stefano Spezia, Sep 17 2018 *)
-
PARI
a(n)=6*n^2-1 \\ Charles R Greathouse IV, Jun 01 2011
Formula
a(n) = 2*a(n-1) - a(n-2) + 12.
First differences: a(n+1) - a(n) = A017593(n).
G.f.: (1-8*x-5*x^2)/(x-1)^3. - Jaume Oliver Lafont, Aug 30 2009
From Vincenzo Librandi, Feb 05 2012: (Start)
a(n) = a(n-1) + 12*n - 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A033581(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = A032528(2*n) - 1. - Adriano Caroli, Jul 21 2013
For n > 0, a(n) = floor(3/(cosh(1/n) - 1)) = floor(1/(n*sinh(1/n) - 1)); for similar formulas for cosine and sine, see A033581. - Clark Kimberling, Oct 19 2014, corrected by M. F. Hasler, Oct 21 2014
a(-n) = a(n). - Paul Curtz, Sep 17 2018
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(6))*cot(Pi/sqrt(6)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(6))*csc(Pi/sqrt(6)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(6))*csc(Pi/sqrt(6)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(6))*sin(Pi/sqrt(3))/sqrt(2). (End)
E.g.f.: exp(x)*(6*x^2 + 6*x - 1). - Elmo R. Oliveira, Jan 16 2025
Extensions
Edited and extended by R. J. Mathar, Aug 06 2008
Better description Ray Chandler, Feb 03 2009
Comments