cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A028815 a(n) = prime(n) + 1 (starting with 1).

Original entry on oeis.org

2, 3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 0

Views

Author

Keywords

Comments

n-th noncomposite (unit or prime) positive integer + 1.
The "0th prime" is defined to be 1 (a unit, formerly considered to be prime).

Crossrefs

Programs

Formula

a(n) = prime(n) + 1 = A000040(n) + 1 = A008864(n) for n >= 1.
a(n) = A008578(n+1) + 1, n >= 0.
a(n) = 2*A006254(n-1), for n >= 2, with a(0) = 2, a(1) = 3. - G. C. Greubel, Aug 05 2024

A141132 a(n) = prime(prime(prime(prime(A028815(n) - 1) - 1) - 1) - 1) - 1.

Original entry on oeis.org

1, 2, 36, 576, 1492, 4512, 8110, 14778, 18222, 26416, 41452, 51576, 71740, 87552, 96352, 111372, 135660, 167106, 172152, 218550, 238990, 250252, 284148, 317856, 351706, 400408, 441478, 463398, 490246, 505780, 527280, 643990, 679036, 718182
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 31 2008

Keywords

Crossrefs

Programs

  • Magma
    p:=NthPrime;
    A141132:= func< n | n eq 0 select 1 else p(p(p(p(p(n))-1)-1)-1)-1 >;
    [A141132(n): n in [0..50]]; // G. C. Greubel, Aug 05 2024
    
  • Mathematica
    A141132[n_]:= With[{p=Prime}, If[n==0, 1, p[p[p[p[p[n]]-1]-1]-1]-1 ]];
    Table[A141132[n], {n, 0, 60}] (* G. C. Greubel, Aug 05 2024 *)
  • SageMath
    p=nth_prime
    def A141132(n): return 1 if n==0 else p(p(p(p(p(n))-1)-1)-1)-1
    [A141132(n) for n in range(51)] # G. C. Greubel, Aug 05 2024

Formula

a(n) = prime(prime(prime(prime(prime(n)) - 1) - 1) - 1) - 1, with a(0) = 1. - G. C. Greubel, Aug 05 2024

Extensions

Extended by D. S. McNeil, Mar 21 2009
Offset changed by G. C. Greubel, Aug 05 2024

A141133 a(n) = prime(prime(prime(A028815(n) - 1) - 1) - 1) - 1.

Original entry on oeis.org

1, 2, 12, 106, 238, 612, 1020, 1732, 2088, 2902, 4336, 5278, 7102, 8500, 9282, 10566, 12640, 15268, 15678, 19488, 21142, 22062, 24766, 27430, 30108, 33892, 37056, 38706, 40786, 41980, 43626, 52360, 54982, 57900, 60496, 66808, 68398, 72670
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 31 2008

Keywords

Crossrefs

Programs

  • Magma
    p:=NthPrime;
    A141133:= func< n | n eq 0 select 1 else p(p(p(p(n))-1)-1) -1 >;
    [A141133(n): n in [0..50]]; // G. C. Greubel, Aug 05 2024
    
  • Mathematica
    A141133[n_]:= With[{p=Prime}, If[n==0, 1, p[p[p[p[n]]-1]-1]-1 ]];
    Table[A141133[n], {n,0,60}] (* G. C. Greubel, Aug 05 2024 *)
  • SageMath
    p=nth_prime
    def A141133(n): return 1 if n==0 else p(p(p(p(n))-1)-1)-1
    [A141133(n) for n in range(51)] # G. C. Greubel, Aug 05 2024

Formula

a(n) = prime(prime(prime(prime(n)) - 1) - 1) - 1, with a(0) = 1. - G. C. Greubel, Aug 05 2024

Extensions

Corrected and extended by D. S. McNeil, Mar 21 2009
Offset changed by G. C. Greubel, Aug 05 2024

A141136 a(n) = prime(prime(A028815(n) - 1) - 1) - 1.

Original entry on oeis.org

1, 2, 6, 28, 52, 112, 172, 270, 316, 420, 592, 700, 910, 1060, 1150, 1290, 1510, 1782, 1830, 2212, 2376, 2472, 2740, 2998, 3256, 3630, 3930, 4078, 4270, 4390, 4546, 5350, 5590, 5866, 6100, 6658, 6802, 7186, 7602, 7828, 8218, 8520, 8712, 9310, 9438, 9732
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 31 2008

Keywords

Crossrefs

Programs

  • Magma
    p:=NthPrime;
    A141136:= func< n | n eq 0 select 1 else p(p(p(n))-1) -1 >;
    [A141136(n): n in [0..50]]; // G. C. Greubel, Aug 05 2024
    
  • Mathematica
    A141136[n_]:= With[{p=Prime}, If[n==0, 1, p[p[p[n]]-1]-1]];
    Table[A141136[n], {n,0,60}] (* G. C. Greubel, Aug 05 2024 *)
  • SageMath
    p=nth_prime
    def A141136(n): return 1 if n==0 else p(p(p(n))-1)-1
    [A141136(n) for n in range(51)] # G. C. Greubel, Aug 05 2024

Formula

a(n) = A000040(A000040(A000040(n)) - 1) - 1, with a(0) = 1. - G. C. Greubel, Aug 05 2024

Extensions

Corrected and extended by D. S. McNeil, Mar 21 2009
Offset changed by G. C. Greubel, Aug 05 2024

A141138 a(n) = prime(A028815(n) - 1) - 1.

Original entry on oeis.org

1, 2, 4, 10, 16, 30, 40, 58, 66, 82, 108, 126, 156, 178, 190, 210, 240, 276, 282, 330, 352, 366, 400, 430, 460, 508, 546, 562, 586, 598, 616, 708, 738, 772, 796, 858, 876, 918, 966, 990, 1030, 1062, 1086, 1152, 1170, 1200, 1216, 1296, 1408, 1432, 1446, 1470
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jul 31 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A000040(A000040(n)) - 1, with a(0) = 1. - G. C. Greubel, Aug 05 2024

Extensions

a(14), a(28) corrected by D. S. McNeil, Mar 21 2009
Offset changed by G. C. Greubel, Aug 05 2024

A373016 a(n) is the least positive integer k such that 3*n^2 + 2*n + k is a square.

Original entry on oeis.org

4, 9, 3, 8, 15, 1, 8, 17, 28, 4, 15, 28, 43, 9, 24, 41, 60, 16, 35, 56, 4, 25, 48, 73, 11, 36, 63, 92, 20, 49, 80, 113, 31, 64, 99, 9, 44, 81, 120, 20, 59, 100, 143, 33, 76, 121, 3, 48, 95, 144, 16, 65, 116, 169, 31, 84, 139, 196, 48, 105, 164, 8, 67, 128, 191, 25, 88, 153, 220, 44, 111, 180
Offset: 1

Views

Author

Claude H. R. Dequatre, May 20 2024

Keywords

Comments

The scatterplot shows an interesting crosshatch structure where all terms are at the intersection of ascending and descending hatches.
Terms on each hatch are quite well fitted by a polynomial of degree 2.
For terms on ascending hatches, the parity of the term indices does not change on a given hatch but alternates from one hatch to the next and on the same hatch, the parity of two consecutive terms alternates.
For terms on descending hatches, the parity of the indices of two consecutive terms alternates on the same hatch and that of terms does not change on the same hatch but alternates from one hatch to the next.
All squares exclusively are in ascending order on the same ascending hatch at n = 6, 10, 14, 18, 22, ... but some squares can be also found at the intersection of other hatches.
The first differences of the indices of the terms located on ascending and descending hatches are respectively equal to 4 and 3. For terms that are on the ascending and descending hatches, the differences of order 2 quickly become constant and equal to 2 and 4, respectively.
The fixed points begin 3, 48, 675, 9408, etc. They are all divisible by 3 and their parity seems to alternate. It appears that they are the positive terms of A007654.

Examples

			a(1) = 4 because 3*1^2 + 2*1 = 5 and 5 + 1, 5 + 2, 5 + 3 are not squares, but 5 + 4 is. So, 4 is a term.
a(2) = 9 because 3*2^2 + 2*2 = 16 and 16 + 1, 16 + 2, 16 + 3, 16 + 4, 16 + 5, 16 + 6, 16 + 7, 16 + 8 are not squares, but 16 + 9 is. So, 9 is a term.
		

Crossrefs

Sequences with similar scatterplot and pin plot graphs: A141130, A141131, A141134, A141135.

Programs

Formula

a(n) is the smallest square greater than 3*n^2 + 2*n, minus 3*n^2 + 2*n. - Charles R Greathouse IV, May 21 2024
1 <= a(n) <= floor(sqrt(12)*n) + 3. I believe both bounds are tight infinitely often. - Charles R Greathouse IV, May 21 2024
a(n) = A080883(A045944(n)). - Michel Marcus, May 22 2024
Showing 1-6 of 6 results.