cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A141373 Primes of the form 3*x^2+16*y^2. Also primes of the form 4*x^2+4*x*y-5*y^2 (as well as primes the form 4*x^2+12*x*y+3*y^2).

Original entry on oeis.org

3, 19, 43, 67, 139, 163, 211, 283, 307, 331, 379, 499, 523, 547, 571, 619, 643, 691, 739, 787, 811, 859, 883, 907, 1051, 1123, 1171, 1291, 1459, 1483, 1531, 1579, 1627, 1699, 1723, 1747, 1867, 1987, 2011, 2083, 2131, 2179, 2203, 2251, 2347, 2371, 2467, 2539
Offset: 1

Views

Author

T. D. Noe, May 13 2005; Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

The discriminant is -192 (or 96, or ...), depending on which quadratic form is used for the definition. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1. See A107132 for more information.
Except for 3, also primes of the forms 4x^2 + 4xy + 19y^2 and 16x^2 + 8xy + 19y^2. See A140633. - T. D. Noe, May 19 2008

Examples

			19 is a member because we can write 19=4*2^2+4*2*1-5*1^2 (or 19=4*1^2+12*1*1+3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5),
A038873 (d=8),
A068228, A141123 (d=12),
A038883 (d=13),
A038889 (d=17),
A141158 (d=20),
A141159, A141160 (d=21),
A141170, A141171 (d=24),
A141172, A141173 (d=28),
A141174, A141175 (d=32),
A141176, A141177 (d=33),
A141178 (d=37),
A141179, A141180 (d=40),
A141181 (d=41),
A141182, A141183 (d=44),
A033212, A141785 (d=45),
A068228, A141187 (d=48),
A141188 (d=52),
A141189 (d=53),
A141190, A141191 (d=56),
A141192, A141193 (d=57),
A141215 (d=61),
A141111, A141112 (d=65),
A141336, A141337 (d=92),
A141338, A141339 (d=93),
A141161, A141163 (d=148),
A141165, A141166 (d=229),

Programs

  • Magma
    [3] cat [ p: p in PrimesUpTo(3000) | p mod 24 in {19 } ]; // Vincenzo Librandi, Jul 24 2012
    
  • Mathematica
    QuadPrimes2[3, 0, 16, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\16), if(isprime(t=w+16*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 09 2017

Formula

Except for 3, the primes are congruent to 19 (mod 24). - T. D. Noe, May 02 2008

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by N. J. A. Sloane, Jul 14 2019, combining two identical entries both with multiple cross-references.

A141170 Primes of the form x^2+4*x*y-2*y^2 (as well as of the form 3*x^2+6*x*y+y^2).

Original entry on oeis.org

3, 19, 43, 67, 73, 97, 139, 163, 193, 211, 241, 283, 307, 313, 331, 337, 379, 409, 433, 457, 499, 523, 547, 571, 577, 601, 619, 643, 673, 691, 739, 769, 787, 811, 859, 883, 907, 937, 1009, 1033, 1051, 1123, 1129, 1153, 1171, 1201, 1249, 1291, 1297, 1321, 1459, 1483, 1489, 1531
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 12 2008

Keywords

Comments

Discriminant = 24. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
Also, primes of form u^2 - 6v^2. The transformation {u,v} = {x+2y,y} yields the form in the title. - Tito Piezas III, Dec 31 2008
Conjecture: this is also the list of primes that are simultaneously of the form x^2+2y^2 and of the form x^2+3y^2; that is, the intersection of A002476 and A033203. - Zak Seidov, Jun 07 2014
This is also the list of primes p such that p = 3 or p is congruent to 1 or 19 mod 24. - Jean-François Alcover, Oct 28 2016

Examples

			a(2)=19 because we can write 19=3^2+4*3*1-2*1^2 (or 19=3*1^2+6*1*2+2^2)
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141171 (d=24), A106950 (Primes of the form x^2+18y^2), A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).
Cf. also A242661, A002476, A033203.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    xy[{x_, y_}]:={x^2 + 4 x y - 2 y^2, y^2 + 4 x y - 2 x^2}; Union[Select[Flatten[xy/@Subsets[Range[40], {2}]], #>0&&PrimeQ[#]&]] (* Vincenzo Librandi, Jun 09 2014 *)
    Select[Prime[Range[250]], # == 3 || MatchQ[Mod[#, 24], 1|19]&] (* Jean-François Alcover, Oct 28 2016 *)

A141376 Primes of the form -x^2 + 8*x*y + 8*y^2 (as well as of the form 15*x^2 + 24*x*y + 8*y^2).

Original entry on oeis.org

23, 47, 71, 167, 191, 239, 263, 311, 359, 383, 431, 479, 503, 599, 647, 719, 743, 839, 863, 887, 911, 983, 1031, 1103, 1151, 1223, 1319, 1367, 1439, 1487, 1511, 1559, 1583, 1607, 1823, 1847, 1871, 2039, 2063, 2087, 2111, 2207, 2351, 2399, 2423, 2447, 2543
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (oscfalgan(AT)yahoo.es), Jun 28 2008

Keywords

Comments

Discriminant = +96.
Values of the quadratic form are {0, 8, 12, 15, 20, 23} mod 24, so this is a subsequence of A134517. - R. J. Mathar, Jul 30 2008
Is this the same sequence as A134517?
Substituting 2y = y' gives the quadratic form A141171, so these terms are a subsequence of the terms in A141171. - R. J. Mathar, Jun 10 2020

Examples

			a(2)=47 because we can write 47 = -1^2 + 8*1*2 + 8*2^2 (or 47 = 15*1^2 + 24*1*1 + 8*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Extensions

More terms from Arkadiusz Wesolowski, Jul 25 2012

A141750 Primes of the form 4*x^2 + 3*x*y - 4*y^2 (as well as of the form 2*x^2 + 9*x*y + y^2).

Original entry on oeis.org

2, 3, 19, 23, 37, 41, 61, 67, 71, 73, 79, 89, 97, 109, 127, 137, 149, 173, 181, 211, 223, 227, 251, 257, 269, 283, 293, 311, 317, 347, 349, 353, 359, 367, 373, 383, 389, 397, 401, 419, 439, 457, 461, 463, 479, 487, 499, 503, 509, 523, 547, 557, 587, 593, 607
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 03 2008

Keywords

Comments

Discriminant = 73. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac.
Is this the same as A038957? - R. J. Mathar, Jul 04 2008. Answer: almost certainly - see the Tunnell notes in A033212. - N. J. A. Sloane, Oct 18 2014

Examples

			a(2) = 3 because we can write 3 = 4*1^2 + 3*1*1 - 4*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

A141772 Primes of the form 3*x^2 + 5*x*y - 5*y^2 (as well as of the form 7*x^2 + 13*x*y + 3*y^2).

Original entry on oeis.org

3, 5, 7, 17, 23, 37, 73, 97, 107, 113, 163, 167, 173, 193, 197, 227, 233, 277, 283, 313, 317, 337, 347, 367, 397, 487, 503, 547, 607, 617, 643, 653, 673, 677, 683, 743, 787, 823, 827, 853, 857, 877, 887, 907, 947, 983, 997, 1013, 1093, 1117, 1153, 1163, 1187
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 85. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(1) = 3 because we can write 3 = 3*1^2 + 5*1*0 - 5*0^2 (or 3 = 7*0^2 + 13*0*1 + 3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141773 (d=85). See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

More terms from Colin Barker, Apr 04 2015
Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A242665 Nonnegative integers of the form -x^2 + 4xy + 2y^2.

Original entry on oeis.org

0, 2, 5, 6, 8, 15, 18, 20, 23, 24, 29, 32, 38, 45, 47, 50, 53, 54, 60, 69, 71, 72, 80, 86, 87, 92, 95, 96, 98, 101, 114, 116, 125, 128, 134, 135, 141, 146, 149, 150, 152, 159, 162, 167, 173, 180, 188, 191, 194, 197, 200, 207, 212, 213, 215, 216, 230, 239, 240, 242, 245, 258, 261, 263, 269, 276, 278, 284, 285, 288, 290, 293, 294
Offset: 1

Views

Author

N. J. A. Sloane, May 31 2014

Keywords

Comments

Discriminant 24.
Multiplied by -1, these are the nonpositive norms of numbers in Z[sqrt(6)]. - Alonso del Arte, Sep 26 2014
Nonnegative integers of the form 2*x^2 - 3*y^2. - Robert Israel, Jun 03 2018
Nonnegative integers of the form 6*x^2 - y^2. - Jon E. Schoenfield, Jun 03 2022

Crossrefs

Primes in this sequence = A141171.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= map(proc(t) local p; p:= t[1] mod 24; if t[2]::even or member(p,{3,1,19}) then NULL else p fi end proc, ifactors(n)[2]);
      if convert(F,set) intersect {7,11,13,17} <> {} then return false fi;
      nops(F)::odd
    end proc:
    filter(0):= true:
    select(filter, [$0..400]); # Robert Israel, Jun 03 2018
  • Mathematica
    Reap[For[n = 0, n <= 300, n++, If[Reduce[-x^2 + 4*x*y + 2*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]

A141778 Primes of the form 4*x^2 + 3*x*y - 5*y^2 (as well as of the form 8*x^2 + 11*x*y + y^2).

Original entry on oeis.org

2, 5, 11, 17, 47, 53, 67, 71, 73, 79, 89, 97, 107, 109, 131, 139, 157, 167, 173, 179, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 283, 307, 311, 317, 331, 347, 367, 373, 401, 409, 443, 449, 461, 463, 467, 479, 487, 509, 523, 587, 601, 607, 613, 619, 631
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 89. Class = 1. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
A subsequence of (and may possibly coincide with) A038977. - R. J. Mathar, Jul 22 2008

Examples

			a(1) = 2 because we can write 2 = 4*1^2 + 3*1*1 - 5*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141772, A141773 (d=85). A141776, A141777 (d=88). A141778 (d=89). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

Typo in crossrefs fixed by Colin Barker, Apr 05 2015
Showing 1-7 of 7 results.