cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A142005 Primes congruent to 1 mod 31.

Original entry on oeis.org

311, 373, 683, 1117, 1303, 1427, 1489, 1613, 1861, 2357, 2543, 2729, 2791, 3163, 3659, 3907, 4093, 4217, 4651, 5023, 5147, 5209, 5333, 5519, 5581, 5953, 6263, 6449, 6883, 7069, 7193, 7937, 8123, 8681, 8867, 8929, 9239, 9859, 10169, 10789, 11161, 11471, 11657
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Primes congruent to 1 mod 62. - Chai Wah Wu, Apr 28 2025

Crossrefs

Programs

A142006 Primes congruent to 2 mod 31.

Original entry on oeis.org

2, 157, 281, 467, 653, 839, 1087, 1459, 1583, 1831, 2017, 2141, 2203, 2389, 2699, 3257, 3319, 3691, 3877, 4001, 4373, 4621, 4931, 4993, 5179, 5303, 5737, 5861, 5923, 6047, 6481, 6791, 6977, 7039, 7349, 7411, 7907, 8093, 8527, 8713, 8837, 9209, 9643, 9767
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

{2} UNION A142874. - R. J. Mathar, Jul 20 2008
a(n) ~ 30n log n. - Charles R Greathouse IV, Apr 28 2015

A141978 Primes congruent to 2 mod 29.

Original entry on oeis.org

2, 31, 89, 263, 379, 727, 1249, 1307, 1423, 1481, 1597, 2003, 2293, 2351, 2467, 2699, 3163, 3221, 3511, 3917, 4091, 4729, 4787, 4903, 5077, 5309, 5483, 5657, 6121, 6353, 6469, 6701, 6991, 7687, 7919, 8093, 8209, 8731, 8963, 9137, 9311, 9601, 9833, 9949
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

{2} UNION A142715. - R. J. Mathar, Jul 20 2008

A140444 Primes congruent to 1 (mod 14).

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 701, 743, 757, 827, 883, 911, 953, 967, 1009, 1051, 1093, 1163, 1289, 1303, 1373, 1429, 1471, 1499, 1583, 1597, 1667, 1709, 1723, 1877, 1933, 2003, 2017, 2087
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Comments

From Federico Provvedi, May 24 2018: (Start)
Also primes congruent to 1 (mod 7).
For every prime p > 2, primes congruent to 1 (mod p) are also congruent to 1 (mod 2*p).
Conjecture: The monic polynomial P(x) = (x+1)^7/x - 1/x = ((x+1)^7-1)/x is irreducible but factorizable over Galois field (mod a(n)) with exactly 6 distinct irreducible factors of degree 1. Examples:
P(x) == (5 + x) (6 + x) (7 + x) (10 + x) (14 + x) (23 + x) (mod 29)
P(x) == (3 + x) (9 + x) (23 + x) (28 + x) (33 + x) (40 + x) (mod 43)
P(x) == (24 + x) (27 + x) (35 + x) (40 + x) (42 + x) (52 + x) (mod 71)
P(x) == (5 + x) (8 + x) (65 + x) (84 + x) (86 + x) (98 + x) (mod 113)
... (End).
Primes in A131877. - Eric Chen, Jun 14 2018

Crossrefs

A090613 gives prime index.
Cf. A090614.
Cf. A131877.
Primes congruent to 1 (mod k): A000040 (k=1), A065091 (k=2), A002476 (k=3 and 6), A002144 (k=4), A030430 (k=5 and 10), this sequence (k=7 and 14), A007519 (k=8), A061237 (k=9 and 18), A141849 (k=11 and 22), A068228 (k=12), A268753 (k=13 and 26), A132230 (k=15 and 30), A094407 (k=16), A129484 (k=17 and 34), A141868 (k=19 and 38), A141881 (k=20), A124826 (k=21 and 42), A212374 (k=23 and 46), A107008 (k=24), A141927 (k=25 and 50), A141948 (k=27 and 54), A093359 (k=28), A141977 (k=29 and 58), A142005 (k=31 and 62), A133870 (k=32).

Programs

  • GAP
    Filtered(Filtered([1..2300],n->n mod 14=1),IsPrime); # Muniru A Asiru, Jun 27 2018
  • Magma
    [p: p in PrimesUpTo(3000)|p mod 14 in {1}]; // Vincenzo Librandi, Dec 18 2010
    
  • Maple
    select(isprime,select(n->modp(n,14)=1,[$1..2300])); # Muniru A Asiru, Jun 27 2018
  • Mathematica
    Select[Prime[Range[500]], Mod[#, 14] == 1 &]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    is(n)=isprime(n) && n%14==1 \\ Charles R Greathouse IV, Jul 02 2016
    

Formula

a(n) ~ 6n log n. - Charles R Greathouse IV, Jul 02 2016

Extensions

Simpler definition from N. J. A. Sloane, Jul 11 2008

A142003 Primes congruent to 27 mod 29.

Original entry on oeis.org

317, 433, 491, 607, 839, 1013, 1129, 1187, 1303, 1361, 1709, 1999, 2347, 2521, 2579, 2753, 2927, 3217, 3391, 3449, 3623, 3739, 3797, 4261, 4493, 4783, 4957, 5189, 5479, 5653, 5711, 5827, 6581, 6871, 7103, 7219, 7393, 7451, 7741, 8089, 8147, 8263, 8669
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 02 2016

A141979 Primes congruent to 3 mod 29.

Original entry on oeis.org

3, 61, 293, 409, 467, 641, 757, 1163, 1279, 1453, 1511, 1627, 1801, 2207, 2381, 2671, 2729, 2903, 3019, 3251, 3541, 3889, 3947, 4643, 4759, 4817, 4933, 5107, 5281, 5861, 6151, 6673, 7079, 7253, 7369, 7717, 7949, 8123, 8297, 8761, 8819, 9109, 9283, 9341
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 02 2016

A141999 Primes congruent to 23 mod 29.

Original entry on oeis.org

23, 139, 197, 313, 487, 661, 719, 1009, 1531, 1879, 2053, 2111, 2459, 2633, 2749, 3271, 3329, 3677, 3793, 3851, 3967, 4373, 4547, 4663, 4721, 5011, 5417, 5591, 5881, 5939, 6113, 6229, 6287, 6577, 6983, 7331, 7621, 7853, 8317, 8839, 9013, 9187, 9419, 9767
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 02 2016

A142004 Primes congruent to 28 mod 29.

Original entry on oeis.org

173, 347, 463, 521, 811, 1217, 1913, 2029, 2087, 2203, 2377, 2551, 2609, 2957, 3769, 3943, 4001, 4349, 4523, 4639, 4813, 4871, 4987, 5393, 5683, 5741, 5857, 6089, 6263, 6379, 6553, 6959, 7307, 7481, 7829, 8293, 8467, 8641, 8699, 9221, 9337, 9511, 9743
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 02 2016

A248620 Lesser of twin primes of (29n + 1, 29n + 3).

Original entry on oeis.org

59, 1277, 1451, 3539, 4931, 5279, 9281, 9629, 10499, 11717, 12239, 16067, 22157, 23027, 23201, 24419, 26681, 31727, 34511, 35729, 37991, 40427, 45821, 47387, 48779, 55217, 59219, 60089, 70181, 70877, 72269, 75401, 77489, 79229, 80447, 83231, 85667, 88799
Offset: 1

Views

Author

Karl V. Keller, Jr., Oct 10 2014

Keywords

Comments

Lesser of twin primes where A195819(n) + 1 and A195819(n) + 3 are both primes.
Intersection of A001359 and A141977.

Examples

			29 * 2 + 1 = 59, which is prime, and 61 is also prime, so 59 is in the sequence.
29 * 44 + 1 = 1277, which is prime, and 1279 is also prime, so 1277 is in the sequence.
29 * 50 + 1 = 1451, which is prime, and 1453 is also prime, so 1451 is in the sequence.
29 * 54 + 1 = 1567, which is prime, but 1569 = 3 * 523, so 1567 is not in the sequence.
		

Crossrefs

Cf. A001359 (Lesser of twin primes), A195819 (Multiples of 29).
Cf. A141977 (Primes congruent to 1 mod 29), A141979 (Primes congruent to 3 mod 29).

Programs

  • Mathematica
    Select[58Range[1500] + 1, PrimeQ[#] && PrimeQ[# + 2] &] (* Alonso del Arte, Oct 31 2014 *)
    Select[29*Range[2,3150,2],AllTrue[#+{1,3},PrimeQ]&]+1 (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 16 2019 *)
  • PARI
    lista(nn) = {forstep (n=2, nn, 2, if (isprime(p=29*n+1) && isprime(29*n+3), print1(p, ", ")););} \\ Michel Marcus, Oct 17 2014
  • Python
    from math import *
    from sympy import isprime
    for n in range(0,10001):
      if isprime(58*n+1) and isprime(58*n+3): print (58*n+1,end=', ')
    

A141980 Primes congruent to 4 mod 29.

Original entry on oeis.org

149, 439, 613, 787, 1019, 1193, 1367, 1483, 1657, 1831, 1889, 2063, 2179, 2237, 2411, 3049, 3571, 3803, 3919, 4093, 4441, 4673, 4789, 5021, 5659, 5717, 6007, 6529, 6703, 6761, 7109, 7283, 7457, 7573, 8269, 8443, 8501, 8849, 9371, 9661, 9719, 10009, 10067
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 28n log n. - Charles R Greathouse IV, Jul 03 2016
Showing 1-10 of 30 results. Next