cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143095 (1, 2, 4, 8, ...) interleaved with (4, 8, 16, 32, ...).

Original entry on oeis.org

1, 4, 2, 8, 4, 16, 8, 32, 16, 64, 32, 128, 64, 256, 128, 512, 256, 1024, 512, 2048, 1024, 4096, 2048, 8192, 4096, 16384, 8192, 32768, 16384, 65536, 32768, 131072, 65536, 262144, 131072, 524288, 262144, 1048576, 524288, 2097152, 1048576, 4194304
Offset: 0

Views

Author

Keywords

Comments

Partial sums are in A079360. a(n) = A076736(n+5). - Klaus Brockhaus, Jul 27 2009

Crossrefs

Cf. A048655.

Programs

  • Maple
    seq(coeff(series((1+4*x)/(1-2*x^2), x, n+1), x, n), n = 0..45); # G. C. Greubel, Mar 13 2020
  • Mathematica
    nn=30;With[{p=2^Range[0,nn]},Riffle[Take[p,nn-2],Drop[p,2]]] (* Harvey P. Dale, Oct 03 2011 *)
  • Maxima
    A143095(n):=(5-3*(-1)^n)*2^(1/4*(2*n-1+(-1)^n))/2$
    makelist(A143095(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    for(n=0, 41, print1((5-3*(-1)^n)*2^(1/4*(2*n-1+(-1)^n))/2, ",")) \\ Klaus Brockhaus, Jul 27 2009
    
  • Sage
    [(5 -3*(-1)^n)*2^((2*n-1+(-1)^n)/4)/2 for n in (0..45)] # G. C. Greubel, Mar 13 2020

Formula

Inverse binomial transform of A048655: (1, 5, 11, 27, 65, 157, ...).
a(n) = A135530(n+1). - R. J. Mathar, Aug 02 2008
From Klaus Brockhaus, Jul 27 2009: (Start)
a(n) = (5 - 3*(-1)^n) * 2^((2*n-1+(-1)^n)/4)/2.
a(n) = 2*a(n-2) for n > 1; a(0) = 1, a(1) = 4.
G.f.: (1+4*x)/(1-2*x^2). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011

Extensions

More terms from Klaus Brockhaus, Jul 27 2009