cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A048655 Generalized Pellian with second term equal to 5.

Original entry on oeis.org

1, 5, 11, 27, 65, 157, 379, 915, 2209, 5333, 12875, 31083, 75041, 181165, 437371, 1055907, 2549185, 6154277, 14857739, 35869755, 86597249, 209064253, 504725755, 1218515763, 2941757281, 7102030325, 17145817931, 41393666187, 99933150305, 241259966797, 582453083899
Offset: 0

Views

Author

Keywords

Comments

Equals binomial transform of A143095: (1, 4, 2, 8, 4, 16, 8, 32, ...). - Gary W. Adamson, Jul 23 2008

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x)/(1-2*x-x^2))); // G. C. Greubel, Jul 26 2018
  • Maple
    with(combinat): a:=n->3*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..26); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{4},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    LinearRecurrence[{2,1},{1,5},30] (* Harvey P. Dale, Nov 05 2011 *)
  • Maxima
    a[0]:1$
    a[1]:5$
    a[n]:=2*a[n-1]+a[n-2]$
    A048655(n):=a[n]$
    makelist(A048655(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    a(n)=([0,1; 1,2]^n*[1;5])[1,1] \\ Charles R Greathouse IV, Feb 09 2017
    

Formula

a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=5.
a(n) = ((4+sqrt(2))(1+sqrt(2))^n - (4-sqrt(2))(1-sqrt(2))^n)/2*sqrt(2).
a(n) = P(n) - 3*P(n+1) + 2*P(n+2). - Creighton Dement, Jan 18 2005
G.f.: (1+3*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008
E.g.f.: exp(x)*(cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - Vaclav Kotesovec, Feb 16 2015
a(n) = 3*Pell(n) + Pell(n+1), where Pell = A000129. - Vladimir Reshetnikov, Sep 27 2016

A081180 4th binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 8, 50, 288, 1604, 8800, 47944, 260352, 1411600, 7647872, 41420576, 224294400, 1214467136, 6575615488, 35602384000, 192760455168, 1043650265344, 5650555750400, 30593342288384, 165638957801472, 896804870374400
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Crossrefs

Binomial transform of A081179.
Cf. A081182.

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 8*Self(n-1)-14*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    Join[{a=0,b=1},Table[c=8*b-14*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *)
    CoefficientList[Series[x / (1 - 8 x + 14 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{8,-14},{0,1},30] (* Harvey P. Dale, Aug 17 2019 *)
  • Sage
    [lucas_number1(n,8,14) for n in range(0, 22)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 8a(n-1) - 14a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1 - 8x + 14x^2).
a(n) = ((4 + sqrt(2))^n - (4 - sqrt(2))^n)/(2*sqrt(2)).
a(n) = Sum_{k=0..n} C(n,2k+1) 2^k*4^(n-2k-1).
If shifted once left, fourth binomial transform of A143095. - Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009, R. J. Mathar, Oct 15 2009
E.g.f.: exp(4*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017

Extensions

Modified the completing comment on the fourth binomial transform - R. J. Mathar, Oct 15 2009

A163349 a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 67, 463, 3089, 20241, 131363, 848087, 5459521, 35089209, 225323107, 1446179263, 9279361169, 59531488641, 381889579523, 2449671556487, 15713255235841, 100790106559209, 646496195167747, 4146789500815663
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009

Keywords

Comments

Binomial transform of A081180 without initial 0. Fifth binomial transform of A143095.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+2*r)*(5+r)^n+(1-2*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009
    
  • Mathematica
    LinearRecurrence[{10,-23}, {1,9}, 50] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    Vec((1-x)/(1-10*x+23*x^2) + O(x^50)) \\ G. C. Greubel, Dec 19 2016

Formula

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
a(n) = ((1+2*sqrt(2))*(5+sqrt(2))^n + (1-2*sqrt(2))*(5-sqrt(2))^n)/2.
G.f.: (1-x)/(1-10*x+23*x^2).
E.g.f.: exp(5*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 19 2016

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009

A163416 a(n) = 20*a(n-1) - 98*a(n-2) for n>1, a(0)=1, a(1)=14.

Original entry on oeis.org

1, 14, 182, 2268, 27524, 328216, 3866968, 45174192, 524520976, 6063348704, 69863918432, 803070195648, 9214739906624, 105593918958976, 1208833868330368, 13828473308627712, 158103747076178176, 1806884557278047744, 20643523932095493632, 235795792028661193728, 2692850495227865498624
Offset: 0

Views

Author

Klaus Brockhaus, Jul 27 2009

Keywords

Comments

Binomial transform of A163415. Tenth binomial transform of A143095.

Crossrefs

Programs

  • Magma
    [n le 2 select 13*n-12 else 20*Self(n-1)-98*Self(n-2): n in [1..17]];
    
  • Mathematica
    LinearRecurrence[{20,-98},{1,14},30] (* Harvey P. Dale, Aug 14 2012 *)
  • PARI
    Vec((1-6*x)/(1-20*x+98*x^2) + O(x^50)) \\ G. C. Greubel, Dec 21 2016

Formula

a(n) = ((1 + 2*sqrt(2))*(10 + sqrt(2))^n + (1 - 2*sqrt(2))*(10 - sqrt(2))^n)/2.
O.g.f.: (1 - 6*x)/(1 - 20*x + 98*x^2).
E.g.f.: exp(10*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 21 2016

A238549 a(n) is one fourth of the total number of free ends of 4 line segments expansion at n iterations (see Comments lines for definition).

Original entry on oeis.org

1, 2, 6, 8, 16, 20, 36, 44, 76, 92, 156, 188, 316, 380, 636, 764, 1276, 1532, 2556, 3068, 5116, 6140, 10236, 12284, 20476, 24572, 40956, 49148, 81916, 98300, 163836, 196604, 327676, 393212, 655356, 786428, 1310716, 1572860, 2621436, 3145724, 5242876, 6291452, 10485756
Offset: 1

Views

Author

Kival Ngaokrajang, May 01 2015

Keywords

Comments

The initial pattern consists of 4 straight line segments which are the radii of a square. The next generations are scaled down by a factor of 1/sqrt(2) and rotated by an angle of Pi/4. Their free ends are the ends of elements that do not contact or cross the other ones. Overlaps among different generations are prohibited. See illustration in the links.
We take the official definition to be that provided by the PARI program. From this the assertions in the Formula section follow (they were formerly stated as conjectures). - N. J. A. Sloane, Feb 24 2019
From Georg Fischer, Feb 20 2019: (Start)
The following pattern can be seen for a(n) in base 2:
n a(n)
== ==================
1 1 = 1_2
2 2 = 10_2
3 6 = 110_2
4 8 = 1000_2
5 16 = 10000_2
6 20 = 10100_2
7 36 = 100100_2
8 44 = 101100_2
9 76 = 1001100_2
10 92 = 1011100_2
11 156 = 10011100_2
12 188 = 10111100_2
13 316 = 100111100_2
14 380 = 101111100_2
15 636 = 1001111100_2
16 764 = 1011111100_2
(End)

Examples

			The first numbers of free ends (4*a(n)) are 4, 8, 24, 32, 64, 80, 144, 176, 304, 368, 624, ...
		

Crossrefs

Programs

  • PARI
    {print1(1,", "); for (n=1,100,s=1; for (i=0,n-1,s=s+(5-3*(-1)^i)*2^(1/4*(2*i-1+(-1)^i))/2); print1(s,", "))}
    
  • Sage
    def a():
        s, n = 2, 1
        yield 1
        while True:
            yield s
            s += (5-3*(-1)^n)*2^((2*n-1+(-1)^n)//4)//2
            n += 1
    A238549 = a(); [next(A238549) for  in range(43)] # _Peter Luschny, Feb 24 2019

Formula

a(n) = 1 + Sum_{i=1..n-1} A143095(i).
G.f.: x*(2*x^2+x+1) / ((x-1)*(2*x^2-1)). - Colin Barker, May 02 2015
From Georg Fischer, Feb 20 2019: (Start)
With p = floor((n + 2) / 2) for n >= 4: if n even then a(n) = 2^p + 4 * (2^(p - 4) - 1); if n odd then a(n) = 2^p + 4 * (2^(p - 3) - 1).
a(n) = a(n - 1) + 2 * a(n - 2) - 2 * a(n - 3).
(End)

A163348 a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 35, 161, 721, 3199, 14147, 62489, 275905, 1218007, 5376707, 23734193, 104768209, 462469903, 2041441955, 9011362409, 39778080769, 175588947751, 775087121123, 3421400092481, 15102790707025, 66666943594783
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009

Keywords

Comments

Binomial transform of A111566. Third binomial transform of A143095. Inverse binomial transform of A081180 without initial 0.

Crossrefs

Cf. A111566, A143095 (1,4,2,8,4,16,...), A081180.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+2*r)*(3+r)^n+(1-2*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009
    
  • Mathematica
    LinearRecurrence[{6, -7}, {1, 7}, 50] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    Vec((1+x)/(1-6*x+7*x^2) + O(x^50)) \\ G. C. Greubel, Dec 19 2016

Formula

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
a(n) = ((1+2*sqrt(2))*(3+sqrt(2))^n + (1-2*sqrt(2))*(3-sqrt(2))^n)/2.
G.f.: (1+x)/(1-6*x+7*x^2).
E.g.f.: exp(3*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 19 2016
a(n) = A081179(n)+A081179(n+1). - R. J. Mathar, Feb 04 2021

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009
Showing 1-6 of 6 results.