cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A367211 Triangular array read by rows: T(n, k) = binomial(n, k) * A000129(n - k) for 0 <= k < n.

Original entry on oeis.org

1, 2, 2, 5, 6, 3, 12, 20, 12, 4, 29, 60, 50, 20, 5, 70, 174, 180, 100, 30, 6, 169, 490, 609, 420, 175, 42, 7, 408, 1352, 1960, 1624, 840, 280, 56, 8, 985, 3672, 6084, 5880, 3654, 1512, 420, 72, 9, 2378, 9850, 18360, 20280, 14700, 7308, 2520, 600, 90, 10
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2023

Keywords

Comments

T(n, k) are the coefficients of the polynomials p(1, x) = 1, p(2, x) = 2 + 2*x, p(n, x) = u*p(n-1, x) + v*p(n-2, x) for n >= 3, where u = p(2, x), v = 1 - 2*x - x^2.
Because (p(n, x)) is a strong divisibility sequence, for each integer k, the sequence (p(n, k)) is a strong divisibility sequence of integers.

Examples

			First nine rows:
  [n\k] 0     1     2     3     4     5    6   7  8
  [1]   1;
  [2]   2     2;
  [3]   5     6    3;
  [4]  12    20    12     4;
  [5]  29    60    50    20     5;
  [6]  70   174   180   100    30     6;
  [7] 169   490   609   420   175    42   7;
  [8] 408  1352  1960  1624   840   280   56   8;
  [9] 985  3672  6084  5880  3654  1512  420  72  9;
.
Row 4 represents the polynomial p(4,x) = 12 + 20 x + 12 x^2 + 4 x^3, so that (T(4,k)) = (12, 20, 12, 4), k = 0..3.
		

Crossrefs

Cf. A000129 (column 1, Pell numbers), A361732 (column 2), A000027 (T(n,n-1)), A007070 (row sums, p(n,1)), A077957 (alternating row sums, p(n,-1)), A081179 (p(n,2)), A077985 (p(n,-2)), A081180 (p(n,3)), A007070 (p(n,-3)), A081182 (p(n,4)), A094440, A367208, A367209, A367210.

Programs

  • Maple
    P := proc(n) option remember; ifelse(n <= 1, n, 2*P(n - 1) + P(n - 2)) end:
    T := (n, k) -> P(n - k) * binomial(n, k):
    for n from 1 to 9 do [n], seq(T(n, k), k = 0..n-1) od;
    # (after Werner Schulte)  Peter Luschny, Nov 24 2023
  • Mathematica
    p[1, x_] := 1; p[2, x_] := 2 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    (* Or: *)
    T[n_, k_] := Module[{P},
      P[m_] := P[m] = If[m <= 1, m, 2*P[m - 1] + P[m - 2]];
      P[n - k] * Binomial[n, k] ];
    Table[T[n, k], {n, 1, 9}, {k, 0, n - 1}]  (* Peter Luschny, Mar 07 2025 *)

Formula

p(n, x) = u*p(n-1, x) + v*p(n-2, x) for n >= 3, where p(1, x) = 1, p(2, x) = 2 + 2*x, u = p(2, x), and v = 1 - 2*x - x^2.
p(n, x) = k*(b^n - c^n), where k = sqrt(1/8), b = x + 1 - sqrt(2), c = x + 1 + sqrt(2).
From Werner Schulte, Nov 24 2023 and Nov 25 2023: (Start)
The row polynomials p(n, x) = Sum_{k=0..n-1} T(n, k) * x^k satisfy the equation p'(n, x) = n * p(n-1, x) where p' is the first derivative of p.
T(n, k) = T(n-1, k-1) * n / k for 0 < k < n and T(n, 0) = A000129(n) for n > 0.
T(n, k) = A000129(n-k) * binomial(n, k) for 0 <= k < n.
G.f.: t / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)

Extensions

New name using a formula of Werner Schulte by Peter Luschny, Mar 07 2025

A081179 3rd binomial transform of (0,1,0,2,0,4,0,8,0,16,...).

Original entry on oeis.org

0, 1, 6, 29, 132, 589, 2610, 11537, 50952, 224953, 993054, 4383653, 19350540, 85417669, 377052234, 1664389721, 7346972688, 32431108081, 143157839670, 631929281453, 2789470811028, 12313319895997, 54353623698786
Offset: 0

Views

Author

Paul Barry, Mar 11 2003

Keywords

Comments

Binomial transform of 0, 1, 4, 14, 48, ... (A007070 with offset 1) and second binomial transform of A000129. - R. J. Mathar, Dec 10 2011

Crossrefs

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
  • Maple
    f:= gfun:-rectoproc({a(n) = 6*a(n-1)-7*a(n-2), a(0)=0, a(1)=1},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Mar 15 2016
  • Mathematica
    CoefficientList[Series[x/(1-6 x +7 x^2), {x,0,30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{6,-7}, {0,1}, 41] (* G. C. Greubel, Jan 14 2024 *)
  • Sage
    [lucas_number1(n,6,7) for n in range(0, 23)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 6*a(n-1) - 7*a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1-6*x+7*x^2).
a(n) = ((3+sqrt(2))^n - (3-sqrt(2))^n)/(2*sqrt(2)). [Corrected by Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008]
a(n) = 3^(n-1) Sum_{i>=0} binomial(n, 2i+1) * (2/9)^i. - Sergio Falcon, Mar 15 2016
a(n) = 2^(-1/2)*7^(n/2)*sinh(n*arcsinh(sqrt(2/7))). - Robert Israel, Mar 15 2016
E.g.f.: exp(3*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017
a(n) = 7^((n-1)/2)*ChebyshevU(n-1, 3/sqrt(7)). - G. C. Greubel, Jan 14 2024

A164300 a(n) = ((1+4*sqrt(2))*(4+sqrt(2))^n + (1-4*sqrt(2))*(4-sqrt(2))^n)/2.

Original entry on oeis.org

1, 12, 82, 488, 2756, 15216, 83144, 452128, 2453008, 13294272, 72012064, 389976704, 2111644736, 11433484032, 61904845952, 335169991168, 1814692086016, 9825156811776, 53195565289984, 288012326955008
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A164299. Fourth binomial transform of A164587. Inverse binomial transform of A164301.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), this sequence (m=3), A164301 (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(4+r)^n+(1-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Mathematica
    LinearRecurrence[{8,-14},{1,12},30] (* Harvey P. Dale, Apr 13 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+4*x)/(1-8*x+14*x^2)) \\ G. C. Greubel, Sep 13 2017
    
  • Sage
    [( (1+4*x)/(1-8*x+14*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Mar 12 2021

Formula

a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 1, a(1) = 12.
G.f.: (1+4*x)/(1-8*x+14*x^2).
E.g.f.: (4*sqrt(2)*sinh(sqrt(2)*x) + cosh(sqrt(2)*x))*exp(4*x). - Ilya Gutkovskiy, Jun 24 2016
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = 2*A083879(n) + 8*A081180(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*3^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A145303 a(n) = ((8 + sqrt(8))^n + (8 - sqrt(8))^n)/2.

Original entry on oeis.org

1, 8, 72, 704, 7232, 76288, 815616, 8777728, 94769152, 1024753664, 11088986112, 120037572608, 1299617939456, 14071782965248, 152369922834432, 1649898919297024, 17865667030024192, 193456332999753728
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Oct 06 2008

Keywords

Comments

Binomial transform is A152267, inverse binomial transform is A147689.

Crossrefs

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-8); S:=[ ((8+r8)^n+(8-r8)^n)/2: n in [0..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Oct 20 2008

Formula

From R. J. Mathar, Oct 10 2008: (Start)
a(n) = 16*a(n-1) - 56*a(n-2).
G.f.: (1-8x)/(1-16x+56x^2).
a(n) = 2^n*A081180(n+1) - 2^(n+2)*A081180(n). (End)
a(n) = Sum_{k=0..n} 8^k*A098158(n,k). - Philippe Deléham, Oct 14 2008

Extensions

More terms from R. J. Mathar, Oct 10 2008
Edited by Klaus Brockhaus, Jul 09 2009

A161731 Expansion of (1-3*x)/(1-8*x+14*x^2).

Original entry on oeis.org

1, 5, 26, 138, 740, 3988, 21544, 116520, 630544, 3413072, 18476960, 100032672, 541583936, 2932214080, 15875537536, 85953303168, 465368899840, 2519604954368, 13641675037184, 73858930936320, 399887996969984
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009

Keywords

Comments

Fourth binomial transform of A016116.
Inverse binomial transform of A161734. Binomial transform of A086351. - R. J. Mathar, Jun 18 2009

Crossrefs

Programs

  • Magma
    [Floor(((2+Sqrt(2))*(4+Sqrt(2))^n+(2-Sqrt(2))*(4-Sqrt(2))^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 18 2011
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-8x+14x^2),{x,0,30}],x] (* or *) LinearRecurrence[{8,-14},{1,5},30] (* Harvey P. Dale, Feb 29 2024 *)
  • PARI
    F=nfinit(x^2-2); for(n=0, 20, print1(nfeltdiv(F, ((2+x)*(4+x)^n+(2-x)*(4-x)^n), 4)[1], ",")) \\ Klaus Brockhaus, Jun 19 2009
    

Formula

a(n) = ((2+sqrt(2))*(4+sqrt(2))^n+(2-sqrt(2))*(4-sqrt(2))^n)/4.
a(n) = 8*a(n-1)-14*a(n-2). - R. J. Mathar, Jun 18 2009
a(n) = A081180(n+1) -3*A081180(n). - R. J. Mathar, Jul 19 2012

Extensions

Extended by R. J. Mathar and Klaus Brockhaus, Jun 18 2009
Edited by Klaus Brockhaus, Jul 05 2009

A153593 a(n) = ((9 + sqrt(2))^n - (9 - sqrt(2))^n)/(2*sqrt(2)).

Original entry on oeis.org

1, 18, 245, 2988, 34429, 383670, 4186169, 45041112, 480032665, 5082340122, 53559541661, 562566880260, 5895000053461, 61667217421758, 644304909368225, 6725778192309168, 70163919621475249, 731614075994130210
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008

Keywords

Comments

Preceded by zero, this is the eighth binomial transform of the Pell sequence A000129. - Sergio Falcon, Sep 21 2009; edited by Klaus Brockhaus, Oct 11 2009
Eighth binomial transform of A048697.
First differences are in A164600.
lim_{n -> infinity} a(n)/a(n-1) = 9 + sqrt(2) = 10.4142135623....

Crossrefs

Cf. A000129 (Pell numbers), A007070, A081185, A081184, A081183, A081182, A081180, A081179. - Sergio Falcon, Sep 21 2009
Cf. A002193 (decimal expansion of sqrt(2)), A048697, A164600.

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((9+r)^n-(9-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
  • Mathematica
    Join[{a=1,b=18},Table[c=18*b-79*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
    LinearRecurrence[{18,-79},{1,18},25] (* G. C. Greubel, Aug 22 2016 *)

Formula

a(n) = 18*a(n-1) - 79*a(n-2) for n>1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
G.f.: x/(1 - 18*x + 79*x^2). - Klaus Brockhaus, Dec 31 2008, corrected Oct 11 2009
a(n) = Sum[Binomial[n - 1 - i, i] (-1)^i * 18^(n - 1 - 2 i) * 79^i, {i, 0, Floor[(n - 1)/2]}]. - Sergio Falcon, Sep 21 2009
E.g.f.: exp(9*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017

Extensions

Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009

A163349 a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 67, 463, 3089, 20241, 131363, 848087, 5459521, 35089209, 225323107, 1446179263, 9279361169, 59531488641, 381889579523, 2449671556487, 15713255235841, 100790106559209, 646496195167747, 4146789500815663
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009

Keywords

Comments

Binomial transform of A081180 without initial 0. Fifth binomial transform of A143095.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+2*r)*(5+r)^n+(1-2*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009
    
  • Mathematica
    LinearRecurrence[{10,-23}, {1,9}, 50] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    Vec((1-x)/(1-10*x+23*x^2) + O(x^50)) \\ G. C. Greubel, Dec 19 2016

Formula

a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
a(n) = ((1+2*sqrt(2))*(5+sqrt(2))^n + (1-2*sqrt(2))*(5-sqrt(2))^n)/2.
G.f.: (1-x)/(1-10*x+23*x^2).
E.g.f.: exp(5*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 19 2016

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009

A163348 a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 35, 161, 721, 3199, 14147, 62489, 275905, 1218007, 5376707, 23734193, 104768209, 462469903, 2041441955, 9011362409, 39778080769, 175588947751, 775087121123, 3421400092481, 15102790707025, 66666943594783
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 25 2009

Keywords

Comments

Binomial transform of A111566. Third binomial transform of A143095. Inverse binomial transform of A081180 without initial 0.

Crossrefs

Cf. A111566, A143095 (1,4,2,8,4,16,...), A081180.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+2*r)*(3+r)^n+(1-2*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 26 2009
    
  • Mathematica
    LinearRecurrence[{6, -7}, {1, 7}, 50] (* G. C. Greubel, Dec 19 2016 *)
  • PARI
    Vec((1+x)/(1-6*x+7*x^2) + O(x^50)) \\ G. C. Greubel, Dec 19 2016

Formula

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
a(n) = ((1+2*sqrt(2))*(3+sqrt(2))^n + (1-2*sqrt(2))*(3-sqrt(2))^n)/2.
G.f.: (1+x)/(1-6*x+7*x^2).
E.g.f.: exp(3*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 19 2016
a(n) = A081179(n)+A081179(n+1). - R. J. Mathar, Feb 04 2021

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 26 2009

A121800 a(n)= 4*a(n-1) +18*a(n-2) -48*a(n-3) -60*a(n-4) +80*a(n-5) +56*a(n-6).

Original entry on oeis.org

0, 159, 4694, 36506, 190224, 1152620, 6013304, 33863688, 180138368, 989566320, 5317362784, 28948792992, 156246056704, 847762543808, 4584148419456, 24840385901696, 134422525407232, 728032988040960, 3940920763725312
Offset: 1

Views

Author

Roger L. Bagula, Aug 27 2006

Keywords

Comments

As indicated by the generating function, this can be written as a linear combination of A007070, A081180 and A000079. [Oct 14 2009]

Programs

  • Mathematica
    M = {{0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0}, {0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0}}; v[1] = Table[Fibonacci[n], {n, 0, 17}] v[n_] := v[n] = M.v[n - 1] a = Table[v[n][[1]], {n, 1, 50}]
    LinearRecurrence[{4,18,-48,-60,80,56},{0,159,4694,36506,190224,1152620},40] (* Harvey P. Dale, May 13 2012 *)

Formula

G.f.: x^2*(-159-4058*x-14868*x^2+32660*x^3+30532*x^4)/( (2*x^2-1) * (2*x^2+4*x+1) * ( 14*x^2-8*x+1)). [Oct 14 2009]

Extensions

Definition replaced by recurrence - The Assoc. Editors of the OEIS, Oct 14 2009

A171700 Triangle T : T(n,k)= A007318(n,k)*a(n-k) with a(0)=0 and a(n)= A077957(n-1) for n>0.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 2, 0, 3, 0, 0, 8, 0, 4, 0, 4, 0, 20, 0, 5, 0, 0, 24, 0, 40, 0, 6, 0, 8, 0, 84, 0, 70, 0, 7, 0, 0, 64, 0, 224, 0, 112, 0, 8, 0, 16, 0, 288, 0, 504, 0, 168, 0, 9, 0, 0, 160, 0, 960, 0, 1008, 0, 240, 0, 10, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 15 2009

Keywords

Comments

Diagonal sums : A001353(n+1) alternating with zeros.

Examples

			Triangle begins : 0 ; 1,0 ; 0,2,0 ; 2,0,3,0 ; 0,8,0,4,0 ; 4,0,20,0,5,0 ; ...
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A077957(n-1), A000129(n), A007070(n-1), A081179(n), A081180(n), A081182(n), A081183(n), A081184(n), A081185(n), A153593(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Showing 1-10 of 10 results.