cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A005169 Number of fountains of n coins.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 15, 26, 45, 78, 135, 234, 406, 704, 1222, 2120, 3679, 6385, 11081, 19232, 33379, 57933, 100550, 174519, 302903, 525734, 912493, 1583775, 2748893, 4771144, 8281088, 14373165, 24946955, 43299485, 75153286, 130440740, 226401112, 392955956, 682038999, 1183789679, 2054659669, 3566196321, 6189714276
Offset: 0

Views

Author

Keywords

Comments

A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row.
Also the number of Dyck paths for which the sum of the heights of the vertices that terminate an upstep (i.e., peaks and doublerises) is n. Example: a(4)=3 because we have UDUUDD, UUDDUD and UDUDUDUD. - Emeric Deutsch, Mar 22 2008
Also the number of ordered trees with path length n (follows from previous comment via a standard bijection). - Emeric Deutsch, Mar 22 2008
Probably first studied by Jim Propp (unpublished).
Number of compositions of n with c(1) = 1 and c(i+1) <= c(i) + 1. (Slide each row right 1/2 step relative to the row below, and count the columns.) - Franklin T. Adams-Watters, Nov 24 2009
With the additional requirement for weak unimodality one obtains A001524. - Joerg Arndt, Dec 09 2012

Examples

			An example of a fountain with 19 coins:
... O . O O
.. O O O O O O . O
. O O O O O O O O O
From _Peter Bala_, Dec 26 2012: (Start)
F(1/10) = Sum_{n >= 0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(8 + 1/(1 + 1/(8 + 1/(1 + 1/(98 + 1/(1 + 1/(98 + 1/(1 + 1/(998 + 1/(1 + 1/(998 + 1/(1 + ...)))))))))))).
F(-1/10) = Sum_{n >= 0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(1 + 1/(9 + 1/(99 + 1/(1 + 1/(99 + 1/(999 + 1/(1 + 1/(999 + 1/(9999 + 1/(1 + ...)))))))))))).
(End)
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001524, A192728, A192729, A192730, A111317, A143951, A285903, A226999 (inverse Euler transform), A291148 (convolution inverse).
First column of A168396. - Franklin T. Adams-Watters, Nov 24 2009
Diagonal of A185646.
Row sums of A047998. Column sums of A138158. - Emeric Deutsch, Mar 22 2008

Programs

  • Haskell
    a005169 0 = 1
    a005169 n = a168396 n 1  -- Reinhard Zumkeller, Sep 13 2013; corrected by R. J. Mathar, Sep 16 2013
  • Maple
    P[0]:=1: for n to 40 do P[n]:=sort(expand(t*(sum(P[j]*P[n-j-1]*t^(n-j-1),j= 0..n-1)))) end do: F:=sort(sum(P[k],k=0..40)): seq(coeff(F,t,j),j=0..36); # Emeric Deutsch, Mar 22 2008
    # second Maple program:
    A005169_G:= proc(x,NK); Digits:=250; Q2:=1;
            for k from NK by -1 to 0 do  Q1:=1-x^k/Q2; Q2:=Q1; od;
            Q3:=Q2; S:=1-Q3;
    end:
    series(A005169_G(x, 20), x, 21); # Sergei N. Gladkovskii, Dec 18 2011
  • Mathematica
    m = 36; p[0] = 1; p[n_] := p[n] = Expand[t*Sum[p[j]*p[n-j-1]*t^(n-j-1), {j, 0, n-1}]]; f[t_] = Sum[p[k], {k, 0, m}]; CoefficientList[Series[f[t], {t, 0, m}], t] (* Jean-François Alcover, Jun 21 2011, after Emeric Deutsch *)
    max = 43; Series[1-Fold[Function[1-x^#2/#1], 1, Range[max, 0, -1]], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Sep 16 2014 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, j], {j, 1, Min[i+1, n]}]];
    c[n_] :=  b[n, 0] - b[n-1, 0];
    c /@ Range[0, 50] // Accumulate  (* Jean-François Alcover, Nov 14 2020, after Alois P. Heinz in A289080 *)
  • PARI
    /* using the g.f. from p. L1278 of the Glasser, Privman, Svrakic paper */
    N=30;  x='x+O('x^N);
    P(k)=sum(n=0,N, (-1)^n*x^(n*(n+1+k))/prod(j=1,n,1-x^j));
    G=1+x*P(1)/( (1-x)*P(1)-x^2*P(2) );
    Vec(G) /* Joerg Arndt, Feb 10 2011 */
    
  • PARI
    /* As a continued fraction: */
    {a(n)=local(A=1+x,CF);CF=1+x;for(k=0,n,CF=1/(1-x^(n-k+1)*CF+x*O(x^n));A=CF);polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    /* By the Rogers-Ramanujan continued fraction identity: */
    {a(n)=local(A=1+x,P,Q);
    P=sum(m=0,sqrtint(n),(-1)^m*x^(m*(m+1))/prod(k=1,m,1-x^k));
    Q=sum(m=0,sqrtint(n),(-1)^m*x^(m^2)/prod(k=1,m,1-x^k));
    A=P/(Q+x*O(x^n));polcoeff(A,n)}  /* Paul D. Hanna */
    

Formula

A005169(n) = f(n, 1), where f(n, p) = 0 if p > n, 1 if p = n, Sum(1 <= q <= p+1; f(n-p, q)) if p < n. f=A168396.
G.f.: F(t) = Sum_{k>=0} P[k], where P[0]=1, P[n] = t*Sum_{j= 0..n-1} P[j]*P[n-j-1]*t^(n-j-1) for n >= 1. - Emeric Deutsch, Mar 22 2008
G.f.: 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(...)))))) [given on the first page of the Odlyzko/Wilf reference]. - Joerg Arndt, Mar 08 2011
G.f.: 1/G(0), where G(k)= 1 - x^(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
G.f.: A(x) = P(x)/Q(x) where
P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product_{k=1..n} (1-x^k),
due to the Rogers-Ramanujan continued fraction identity. - Paul D. Hanna, Jul 08 2011
From Peter Bala, Dec 26 2012: (Start)
Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 3, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-2 + 1/(1 + 1/(n-2 + 1/(1 + 1/(n^2-2 + 1/(1 + 1/(n^2-2 + 1/(1 + ...)))))))), while for n >= 2, F(-1/n) has the simple continued fraction expansion 1/(1 + 1/(n-1 + 1/(1 + 1/(n-1 + 1/(n^2-1 + 1/(1 + 1/(n^2-1 + 1/(n^3-1 + 1/(1 + ...))))))))). Examples are given below. Cf. A111317 and A143951.
(End)
a(n) = c * x^(-n) + O((5/3)^n), where c = 0.312363324596741... and x = A347901 = 0.576148769142756... is the lowest root of the equation Q(x) = 0, Q(x) see above (Odlyzko & Wilf 1988). - Vaclav Kotesovec, Jul 18 2013, updated Sep 24 2020
G.f.: G(0), where G(k)= 1 - x^(k+1)/(x^(k+1) - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 06 2013
G.f.: 1 - 1/x + 1/(x*W(0)), where W(k)= 1 - x^(2*k+2)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013

Extensions

More terms from David W. Wilson, Apr 30 2001

A111317 Let f(a,q) = Product_{j>=0} (1 - a*q^j); g.f. is f(q^2,q^3) / f(q,q^3).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, -1, 1, 1, -1, 0, 1, -1, 0, 2, -1, -1, 2, -1, -2, 3, 1, -3, 2, 1, -4, 2, 3, -4, 1, 4, -5, 0, 6, -5, -2, 7, -5, -4, 10, -3, -7, 10, -2, -10, 11, 1, -13, 11, 4, -16, 11, 9, -19, 8, 12, -22, 7, 19, -24, 2, 24, -26, -3, 32, -25, -10, 37, -25, -18, 45, -21, -29, 49, -17, -39, 56, -8, -51, 58, 0, -65, 61, 14, -78, 59, 27, -92
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Comments

Convolution inverse of A111165.

Examples

			From _Peter Bala_, Dec 2012: (Start)
F(1/10) = Sum_{n>=0} a(n)/10^n has the simple continued fraction expansion 1 + 1/(9 + 1/(1 + 1/(99 + 1/(1 + 1/(999 + 1/(1 + ...)))))).
F(-1/10) = Sum_{n>=0} (-1)^n*a(n)/10^n has the simple continued fraction expansion 1/(1 + 1/(9 + 1/(101 + 1/(999 + 1/(1001 + ...))))).
(End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(add(d*[0, 1, -1][irem(d, 3)+1],
          d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*{0, 1, -1}[[Mod[d, 3]+1]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=0, n\3, (1 - x^(3*k+2)) / (1 - x^(3*k+1)), 1 + x * O(x^n)), n))} /* Michael Somos, Dec 23 2007 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,1/(1+x^m+x^(2*m)+x*O(x^n))*x^m/m)),n)} \\ Paul D. Hanna, Jan 23 2010
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(-1, -1)
    a = EulerTransform(b)
    print([a(n) for n in range(88)]) # Peter Luschny, Nov 17 2022

Formula

Euler transform of period 3 sequence [ 1, -1, 0, ...]. - Michael Somos, Dec 23 2007
G.f.: Product_{k>=0} (1 - x^(3*k+2)) / (1 - x^(3*k+1)).
G.f.: exp( Sum_{n>=1} 1/(1 + x^n + x^(2n)) * x^n/n ). - Paul D. Hanna, Jan 23 2010
From Peter Bala, Dec 2012: (Start)
Let F(x) denote the o.g.f. of this sequence. For positive integer n >= 2, the real number F(1/n) has the simple continued fraction expansion 1 + 1/(n-1 + 1/(1 + 1/(n^2-1 + 1/(1 + 1/(n^3-1 + 1/(1 + ...)))))).
For n >= 2, F(-1/n) has the simple continued fraction expansion
1/(1 + 1/(n-1 + 1/(n^2+1 + 1/(n^3-1 + ...)))). Examples are given below. Cf. A005169 and A143951.
(End)

A227310 G.f.: 1/G(0) where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 4, 4, 6, 7, 8, 11, 13, 16, 20, 24, 31, 37, 46, 58, 70, 88, 108, 133, 167, 204, 252, 315, 386, 479, 594, 731, 909, 1122, 1386, 1720, 2124, 2628, 3254, 4022, 4980, 6160, 7618, 9432, 11665, 14433, 17860, 22093, 27341, 33824, 41847, 51785, 64065, 79267
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Comments

Number of rough sandpiles: 1-dimensional sandpiles (see A186085) with n grains without flat steps (no two successive parts of the corresponding composition equal), see example. - Joerg Arndt, Mar 08 2014
The sequence of such sandpiles by base length starts (n>=0) 1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, ... (A097331, essentially A000108 with interlaced zeros). This is a consequence of the obvious connection to Dyck paths, see example. - Joerg Arndt, Mar 09 2014
a(n>=1) are the Dyck paths with area n between the x-axis and the path which return to the x-axis only once (at their end), whereas A143951 includes paths with intercalated touches of the x-axis. - R. J. Mathar, Aug 22 2018

Examples

			From _Joerg Arndt_, Mar 08 2014: (Start)
The a(21) = 7 rough sandpiles are:
:
:   1:      [ 1 2 1 2 1 2 1 2 1 2 3 2 1 ]  (composition)
:
:           o
:  o o o o ooo
: ooooooooooooo  (rendering of sandpile)
:
:
:   2:      [ 1 2 1 2 1 2 1 2 3 2 1 2 1 ]
:
:         o
:  o o o ooo o
: ooooooooooooo
:
:
:   3:      [ 1 2 1 2 1 2 3 2 1 2 1 2 1 ]
:
:       o
:  o o ooo o o
: ooooooooooooo
:
:
:   4:      [ 1 2 1 2 3 2 1 2 1 2 1 2 1 ]
:
:     o
:  o ooo o o o
: ooooooooooooo
:
:
:   5:      [ 1 2 3 2 1 2 1 2 1 2 1 2 1 ]
:
:   o
:  ooo o o o o
: ooooooooooooo
:
:
:   6:      [ 1 2 3 2 3 4 3 2 1 ]
:
:      o
:   o ooo
:  ooooooo
: ooooooooo
:
:
:   7:      [ 1 2 3 4 3 2 3 2 1 ]
:
:    o
:   ooo o
:  ooooooo
: ooooooooo
(End)
From _Joerg Arndt_, Mar 09 2014: (Start)
The A097331(9) = 14 such sandpiles with base length 9 are:
01:  [ 1 2 1 2 1 2 1 2 1 ]
02:  [ 1 2 1 2 1 2 3 2 1 ]
03:  [ 1 2 1 2 3 2 3 2 1 ]
04:  [ 1 2 1 2 3 2 1 2 1 ]
05:  [ 1 2 1 2 3 4 3 2 1 ]
06:  [ 1 2 3 2 1 2 3 2 1 ]
07:  [ 1 2 3 2 1 2 1 2 1 ]
08:  [ 1 2 3 2 3 2 1 2 1 ]
09:  [ 1 2 3 2 3 2 3 2 1 ]
10:  [ 1 2 3 4 3 2 1 2 1 ]
11:  [ 1 2 3 2 3 4 3 2 1 ]
12:  [ 1 2 3 4 3 2 3 2 1 ]
13:  [ 1 2 3 4 3 4 3 2 1 ]
14:  [ 1 2 3 4 5 4 3 2 1 ]
(End)
		

Crossrefs

Cf. A049346 (g.f.: 1 - 1/G(0), where G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).

Programs

  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 + (-q)^(k+1) / (1 - (-q)^(k+1) / G(k+1) ) );
    gf = 1 / G(0);
    Vec(gf)
    
  • PARI
    N = 66;  q = 'q + O('q^N);
    F(q,y,k) = if(k>N, 1, 1/(1 - y*q^2 * F(q, q^2*y, k+1) ) );
    Vec( 1 + q * F(q,q,0) ) \\ Joerg Arndt, Mar 09 2014

Formula

a(0) = 1 and a(n) = abs(A049346(n)) for n>=1.
G.f.: 1/ (1-q/(1+q/ (1+q^2/(1-q^2/ (1-q^3/(1+q^3/ (1+q^4/(1-q^4/ (1-q^5/(1+q^5/ (1+-...) )) )) )) )) )).
G.f.: 1 + q * F(q,q) where F(q,y) = 1/(1 - y * q^2 * F(q, q^2*y) ); cf. A005169 and p. 841 of the Odlyzko/Wilf reference; 1/(1 - q * F(q,q)) is the g.f. of A143951. - Joerg Arndt, Mar 09 2014
G.f.: 1 + q/(1 - q^3/(1 - q^5/(1 - q^7/ (...)))) (from formulas above). - Joerg Arndt, Mar 09 2014
G.f.: F(x, x^2) where F(x,y) is the g.f. of A239927. - Joerg Arndt, Mar 29 2014
a(n) ~ c * d^n, where d = 1.23729141259673487395949649334678514763130846902468... and c = 0.0773368373684184197215007198148835507944051447907... - Vaclav Kotesovec, Sep 05 2017
G.f.: A(x) = 2 -1/A143951(x). - R. J. Mathar, Aug 23 2018

A239927 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength k such that the area between the x-axis and the path is n (n>=0; 0<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0, 3, 0, 5, 0, 1, 0, 0, 0, 1, 0, 6, 0, 6, 0, 1, 0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1, 0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1, 0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1, 0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1, 0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1
Offset: 0

Views

Author

Joerg Arndt, Mar 29 2014

Keywords

Comments

Triangle A129182 transposed.
Column sums give the Catalan numbers (A000108).
Row sums give A143951.
Sums along falling diagonals give A005169.
T(4n,2n) = A240008(n). - Alois P. Heinz, Mar 30 2014

Examples

			Triangle begins:
00:  1;
01:  0, 1;
02:  0, 0, 1;
03:  0, 0, 0, 1;
04:  0, 0, 1, 0, 1;
05:  0, 0, 0, 2, 0, 1;
06:  0, 0, 0, 0, 3, 0, 1;
07:  0, 0, 0, 1, 0, 4, 0, 1;
08:  0, 0, 0, 0, 3, 0, 5, 0, 1;
09:  0, 0, 0, 1, 0, 6, 0, 6, 0, 1;
10:  0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1;
11:  0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1;
12:  0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1;
13:  0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1;
14:  0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1;
15:  0, 0, 0, 0, 0, 5, 0, 35, 0, 63, 0, 45, 0, 12, 0, 1;
16:  0, 0, 0, 0, 1, 0, 16, 0, 65, 0, 92, 0, 55, 0, 13, 0, 1;
17:  0, 0, 0, 0, 0, 5, 0, 40, 0, 112, 0, 129, 0, 66, 0, 14, 0, 1;
18:  0, 0, 0, 0, 0, 0, 16, 0, 86, 0, 182, 0, 175, 0, 78, 0, 15, 0, 1;
19:  0, 0, 0, 0, 0, 3, 0, 43, 0, 167, 0, 282, 0, 231, 0, 91, 0, 16, 0, 1;
20:  0, 0, 0, 0, 0, 0, 14, 0, 102, 0, 301, 0, 420, 0, 298, 0, 105, 0, 17, 0, 1;
...
Column k=4 corresponds to the following 14 paths (dots denote zeros):
#:         path              area   steps (Dyck word)
01:  [ . 1 . 1 . 1 . 1 . ]     4     + - + - + - + -
02:  [ . 1 . 1 . 1 2 1 . ]     6     + - + - + + - -
03:  [ . 1 . 1 2 1 . 1 . ]     6     + - + + - - + -
04:  [ . 1 . 1 2 1 2 1 . ]     8     + - + + - + - -
05:  [ . 1 . 1 2 3 2 1 . ]    10     + - + + + - - -
06:  [ . 1 2 1 . 1 . 1 . ]     6     + + - - + - + -
07:  [ . 1 2 1 . 1 2 1 . ]     8     + + - - + + - -
08:  [ . 1 2 1 2 1 . 1 . ]     8     + + - + - - + -
09:  [ . 1 2 1 2 1 2 1 . ]    10     + + - + - + - -
10:  [ . 1 2 1 2 3 2 1 . ]    12     + + - + + - - -
11:  [ . 1 2 3 2 1 . 1 . ]    10     + + + - - - + -
12:  [ . 1 2 3 2 1 2 1 . ]    12     + + + - - + - -
13:  [ . 1 2 3 2 3 2 1 . ]    14     + + + - + - - -
14:  [ . 1 2 3 4 3 2 1 . ]    16     + + + + - - - -
There are no paths with weight < 4, one with weight 4, none with weight 5, 3 with weight 6, etc., therefore column k=4 is
[0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, ...].
Row n=8 is [0, 0, 0, 0, 3, 0, 5, 0, 1], the corresponding paths of weight=8 are:
Semilength 4:
  [ . 1 . 1 2 1 2 1 . ]
  [ . 1 2 1 . 1 2 1 . ]
  [ . 1 2 1 2 1 . 1 . ]
Semilength 6:
  [ . 1 . 1 . 1 . 1 . 1 2 1 . ]
  [ . 1 . 1 . 1 . 1 2 1 . 1 . ]
  [ . 1 . 1 . 1 2 1 . 1 . 1 . ]
  [ . 1 . 1 2 1 . 1 . 1 . 1 . ]
  [ . 1 2 1 . 1 . 1 . 1 . 1 . ]
Semilength 8:
  [ . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . ]
		

Crossrefs

Sequences obtained by particular choices for x and y in the g.f. F(x,y) are: A000108 (F(1, x)), A143951 (F(x, 1)), A005169 (F(sqrt(x), sqrt(x))), A227310 (1+x*F(x, x^2), also 2-1/F(x, 1)), A239928 (F(x^2, x)), A052709 (x*F(1,x+x^2)), A125305 (F(1, x+x^3)), A002212 (F(1, x/(1-x))).
Cf. A129181.

Programs

  • Maple
    b:= proc(x, y, k) option remember;
          `if`(y<0 or y>x or k<0, 0, `if`(x=0, `if`(k=0, 1, 0),
           b(x-1, y-1, k-y+1/2)+ b(x-1, y+1, k-y-1/2)))
        end:
    T:= (n, k)-> b(2*k, 0, n):
    seq(seq(T(n, k), k=0..n), n=0..20);  # Alois P. Heinz, Mar 29 2014
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[y<0 || y>x || k<0, 0, If[x == 0, If[k == 0, 1, 0], b[x-1, y-1, k-y+1/2] + b[x-1, y+1, k-y-1/2]]]; T[n_, k_] := b[2*k, 0, n]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
  • PARI
    rvec(V) = { V=Vec(V); my(n=#V); vector(n, j, V[n+1-j] ); }
    print_triangle(V)= { my( N=#V ); for(n=1, N, print( rvec( V[n]) ) ); }
    N=20; x='x+O('x^N);
    F(x,y, d=0)=if (d>N, 1, 1 / (1-x*y * F(x, x^2*y, d+1) ) );
    v= Vec( F(x,y) );
    print_triangle(v)

Formula

G.f.: F(x,y) satisfies F(x,y) = 1 / (1 - x*y * F(x, x^2*y) ).
G.f.: 1/(1 - y*x/(1 - y*x^3/(1 - y*x^5/(1 - y*x^7/(1 - y*x^9/( ... )))))).

A088352 G.f. = continued fraction: A(x) = 1/(1-x-x^2/(1-x^3-x^4/(1-x^5-x^6/(1-x^7-x^8/(...))))).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 16, 28, 50, 89, 158, 282, 503, 896, 1598, 2850, 5082, 9064, 16166, 28832, 51424, 91719, 163588, 291774, 520407, 928196, 1655530, 2952805, 5266626, 9393565, 16754386, 29883166, 53299700, 95065503, 169559118, 302426167, 539408258, 962090267
Offset: 0

Views

Author

Paul D. Hanna, Sep 26 2003

Keywords

Comments

From Peter Bala, Jul 29 2019: (Start)
a(n) = the number of triangle stacks of large Schröder type on n triangles. See Links for a definition and an illustration.
Cf. A224704, which enumerates triangle stacks (of small Schröder type) on n triangles and A143951, which enumerates triangle stacks (of Dyck type) on n triangles. (End)

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x^(2*k), 1 - x^(2*k + 1), {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 01 2019 *)

Formula

a(n) ~ c * d^n, where d = 1.78360320457574331710673100097614660803225788206... and c = 0.4843739369092187339166963460525819972933890792971... - Vaclav Kotesovec, Jul 01 2019
From Peter Bala, Jul 29 2019: (Start)
O.g.f. as a continued fraction: A(q) = 1/(1 - q*(1 + q)/(1 - q^4/(1 - q^3*(1 + q^3)/(1 - q^8/( 1 - q^5*(1 + q^5)/(1 - q^12/( (...) ))))))).
O.g.f. as a ratio of q-series: A(q) = N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2+2*n)/( Product_{k = 1..2*n+1} (1 - q^k) ) and D(q) = Sum_{n >= 0} (-1)^n*q^(2*n^2)/( Product_{k = 1..2*n} (1 - q^k) ).
In the above asymptotic formula, 1/d = 0.5606628186... is the minimal positive real zero of D(q), and is the dominant singularity of N(q)/D(q). (End)

Extensions

More terms from Vaclav Kotesovec, Jul 01 2019

A129182 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n such that the area between the x-axis and the path is k (n>=0; 0<=k<=n^2).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 7, 0, 7, 0, 5, 0, 5, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 10, 0, 14, 0, 17, 0, 16, 0, 16, 0, 14, 0, 11, 0, 9, 0, 7, 0, 5, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Emeric Deutsch, Apr 08 2007

Keywords

Comments

Row n has n^2 + 1 terms.
Row sums are the Catalan numbers (A000108).
Sum(k*T(n,k), k=0..n^2) = A008549(n).
Sums along falling diagonals give A005169. - Joerg Arndt, Mar 29 2014
T(2n,4n) = A240008(n). - Alois P. Heinz, Mar 30 2014

Examples

			T(4,10) = 3 because we have UDUUUDDD, UUUDDDUD and UUDUDUDD.
Triangle starts:
1;
0,1;
0,0,1,0,1;
0,0,0,1,0,2,0,1,0,1;
0,0,0,0,1,0,3,0,3,0,3,0,2,0,1,0,1;
0,0,0,0,0,1,0,4,0,6,0,7,0,7,0,5,0,5,0,3,0,2,0,1,0,1;
Transposed triangle (A239927) begins:
00:  1;
01:  0, 1;
02:  0, 0, 1;
03:  0, 0, 0, 1;
04:  0, 0, 1, 0, 1;
05:  0, 0, 0, 2, 0, 1;
06:  0, 0, 0, 0, 3, 0, 1;
07:  0, 0, 0, 1, 0, 4, 0, 1;
08:  0, 0, 0, 0, 3, 0, 5, 0, 1;
09:  0, 0, 0, 1, 0, 6, 0, 6, 0, 1;
10:  0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1;
11:  0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1;
12:  0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1;
13:  0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1;
14:  0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1;
15:  0, 0, 0, 0, 0, 5, 0, 35, 0, 63, 0, 45, 0, 12, 0, 1;
16:  0, 0, 0, 0, 1, 0, 16, 0, 65, 0, 92, 0, 55, 0, 13, 0, 1;
17:  0, 0, 0, 0, 0, 5, 0, 40, 0, 112, 0, 129, 0, 66, 0, 14, 0, 1;
18:  0, 0, 0, 0, 0, 0, 16, 0, 86, 0, 182, 0, 175, 0, 78, 0, 15, 0, 1;
19:  0, 0, 0, 0, 0, 3, 0, 43, 0, 167, 0, 282, 0, 231, 0, 91, 0, 16, 0, 1;
20:  0, 0, 0, 0, 0, 0, 14, 0, 102, 0, 301, 0, 420, 0, 298, 0, 105, 0, 17, 0, 1;
... - _Joerg Arndt_, Mar 25 2014
		

Crossrefs

Cf. A000108, A008549, A139262, A240008, A143951 (column sums).

Programs

  • Maple
    G:=1/(1-t*z*g[1]): for i from 1 to 11 do g[i]:=1/(1-t^(2*i+1)*z*g[i+1]) od: g[12]:=0: Gser:=simplify(series(G,z=0,11)): for n from 0 to 7 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 7 do seq(coeff(P[n],t,j),j=0..n^2) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
           expand(b(x-1, y-1)*z^(y-1/2)+ b(x-1, y+1)*z^(y+1/2))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Mar 29 2014
  • Mathematica
    b[x_, y_] := b[x, y] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y-1]*z^(y-1/2) + b[x-1, y+1]*z^(y+1/2)]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)

Formula

G.f.: G(t,z) given by G(t,z) = 1+t*z*G(t,t^2*z)*G(t,z).
Sum_{k=0..n^2} (n^2-k)/2 * T(n,k) = A139262(n). - Alois P. Heinz, Mar 31 2018

A275760 G.f. A(x,y) satisfies: A(x,y) = x*y + 1/A(x,x*y), with A(0,y) = 1.

Original entry on oeis.org

1, 0, 1, 0, -1, 0, 1, 0, -1, 1, 0, 1, -2, 0, -1, 2, -1, 0, 1, -2, 3, 0, -1, 3, -4, 1, 0, 1, -4, 5, -4, 0, -1, 4, -8, 7, -1, 0, 1, -4, 11, -10, 5, 0, -1, 5, -13, 16, -11, 1, 0, 1, -6, 16, -24, 18, -6, 0, -1, 6, -20, 33, -30, 16, -1, 0, 1, -6, 24, -44, 49, -30, 7, 0, -1, 7, -28, 57, -74, 53, -22, 1, 0, 1, -8, 32, -74, 105, -92, 47, -8, 0, -1, 8, -37, 94, -145, 149, -89, 29, -1, 0, 1, -8, 43, -114, 200, -226, 163, -70, 9, 0, -1, 9, -48, 138, -268, 332, -281, 143, -37, 1, 0, 1, -10, 53, -168, 346, -480, 454, -276, 100, -10, 0, -1, 10, -60, 200, -442, 675, -704, 503, -221, 46, -1, 0, 1, -10, 67, -234, 561, -922, 1064, -860, 450, -138, 11, 0, -1, 11, -73, 273, -701, 1236, -1567, 1402, -863, 330, -56, 1, 0, 1, -12, 80, -318, 861, -1634, 2246, -2214, 1554, -710, 185, -12, 0, -1, 12, -88, 367, -1047, 2130, -3144, 3403, -2657, 1429, -478, 67, -1, 0, 1, -12, 96, -418, 1268, -2732, 4325, -5088, 4378, -2700, 1088, -242, 13
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2016

Keywords

Comments

Row sums equals A275761.
Diagonal sums yield A275762.
G.f. A(x,y) evaluated at A(-x,-1) yields the g.f. of A143951.
G.f. A(x,y) evaluated at A(x,1/x) yields the g.f. of A275762.

Examples

			G.f.: A(x,y) = 1 + y*x - y*x^2 + y*x^3 + (y^2 - y)*x^4 + (-2*y^2 + y)*x^5 + (-y^3 + 2*y^2 - y)*x^6 + (3*y^3 - 2*y^2 + y)*x^7 + (y^4 - 4*y^3 + 3*y^2 - y)*x^8 + (-4*y^4 + 5*y^3 - 4*y^2 + y)*x^9 + (-y^5 + 7*y^4 - 8*y^3 + 4*y^2 - y)*x^10 + (5*y^5 - 10*y^4 + 11*y^3 - 4*y^2 + y)*x^11 + (y^6 - 11*y^5 + 16*y^4 - 13*y^3 + 5*y^2 - y)*x^12 + (-6*y^6 + 18*y^5 - 24*y^4 + 16*y^3 - 6*y^2 + y)*x^13 + (-y^7 + 16*y^6 - 30*y^5 + 33*y^4 - 20*y^3 + 6*y^2 - y)*x^14 + (7*y^7 - 30*y^6 + 49*y^5 - 44*y^4 + 24*y^3 - 6*y^2 + y)*x^15 + (y^8 - 22*y^7 + 53*y^6 - 74*y^5 + 57*y^4 - 28*y^3 + 7*y^2 - y)*x^16 +...
such that the g.f. A(x,y) satisfies:
A(x,y) = x*y + 1/(x^2*y + 1/A(x,x^2*y)),
A(x,y) = x*y + 1/(x^2*y + 1/(x^3*y + 1/A(x,x^3*y))),
A(x,y) = x*y + 1/(x^2*y + 1/(x^3*y + 1/(x^4*y + 1/(x^5*y + 1/(x^6*y + 1/A(x^6*y)))))), ...
with the initial condition A(0,y) = 1.
RELATED SERIES.
The g.f. evaluated at A(-x,-1) yields the g.f. of A143951:
A(-x,-1) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 9*x^8 + 14*x^9 + 21*x^10 + 31*x^11 + 47*x^12 +...+ A143951(n)*x^n +...
which enumerates Dyck paths such that the area between the x-axis and the path is n.
The g.f. evaluated at A(x,1/x) yields the g.f. of A275762:
A(x,1/x) = 2 - x + 2*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 22*x^6 - 41*x^7 + 74*x^8 - 133*x^9 + 243*x^10 - 444*x^11 +...+ A275762(n)*x^n +...
Compare A(x,1/x) to 1/A(x,1), which begins:
1/A(x,1) = 1 - x + 2*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 22*x^6 - 41*x^7 + 74*x^8 - 133*x^9 + 243*x^10 - 444*x^11 +...+ A275762(n)*x^n +...
This triangle of coefficients in A(x,y) begins:
1;
0, 1;
0, -1;
0, 1;
0, -1, 1;
0, 1, -2;
0, -1, 2, -1;
0, 1, -2, 3;
0, -1, 3, -4, 1;
0, 1, -4, 5, -4;
0, -1, 4, -8, 7, -1;
0, 1, -4, 11, -10, 5;
0, -1, 5, -13, 16, -11, 1;
0, 1, -6, 16, -24, 18, -6;
0, -1, 6, -20, 33, -30, 16, -1;
0, 1, -6, 24, -44, 49, -30, 7;
0, -1, 7, -28, 57, -74, 53, -22, 1;
0, 1, -8, 32, -74, 105, -92, 47, -8;
0, -1, 8, -37, 94, -145, 149, -89, 29, -1;
0, 1, -8, 43, -114, 200, -226, 163, -70, 9;
0, -1, 9, -48, 138, -268, 332, -281, 143, -37, 1;
0, 1, -10, 53, -168, 346, -480, 454, -276, 100, -10;
0, -1, 10, -60, 200, -442, 675, -704, 503, -221, 46, -1;
0, 1, -10, 67, -234, 561, -922, 1064, -860, 450, -138, 11;
0, -1, 11, -73, 273, -701, 1236, -1567, 1402, -863, 330, -56, 1;
0, 1, -12, 80, -318, 861, -1634, 2246, -2214, 1554, -710, 185, -12;
0, -1, 12, -88, 367, -1047, 2130, -3144, 3403, -2657, 1429, -478, 67, -1;
0, 1, -12, 96, -418, 1268, -2732, 4325, -5088, 4378, -2700, 1088, -242, 13;
0, -1, 13, -104, 474, -1521, 3459, -5863, 7416, -7002, 4830, -2295, 674, -79, 1;
0, 1, -14, 112, -538, 1803, -4342, 7819, -10598, 10884, -8290, 4537, -1624, 310, -14;
0, -1, 14, -121, 607, -2124, 5397, -10274, 14895, -16478, 13769, -8473, 3588, -928, 92, -1;
0, 1, -14, 131, -678, 2492, -6638, 13348, -20582, 24408, -22200, 15126, -7406, 2367, -390, 15;
0, -1, 15, -140, 755, -2905, 8095, -17160, 27998, -35485, 34829, -26052, 14411, -5476, 1251, -106, 1; ...
		

Crossrefs

Programs

  • PARI
    /* Print first N rows of this triangle: */ N=32;
    {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = 1/A + y*x^(n+1-k)); polcoeff(A, n)}
    {for(n=0, N, for(k=0, n, if(k==0, print1(polcoeff(a(n)+y*O(y^n), k, y)", "), if(polcoeff(a(n)+y*O(y^n), k, y)==0, break, print1(polcoeff(a(n)+y*O(y^n), k, y), ", ")))); print(""))}

Formula

G.f.: A(x,y) = 1/(1 - x*y/(1 + x*(1+y) - x^3*y/(1 + x^2*(1+y) - x^5*y/(1 + x^3*(1+y) - x^7*y/(1 + x^4*(1+y) - x^9*y/(1 - ...)))))), a continued fraction.
G.f.: A(x,y) = 1/(1 - x*y/(1+x + x*y/(1+x^2 - x^4*y/(1+x^3 + x^2*y/(1+x^4 - x^7*y/(1+x^5 + x^3*y/(1+x^6 - x^10*y/(1+x^7 + x^4*y/(1+x^8 - x^13*y/(1+x^9 + x^5*y/(1+x^10 - x^16*y/(1 + ...)))))))))))), a continued fraction.
Given g.f. A(x,y), then A(x,1/x) = 1 + 1/A(x,1).

A291874 Expansion of 1 - x/(1 - x^3/(1 - x^5/(1 - x^7/(1 - x^9/(1 - ... - x^(2*k-1)/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, -1, 0, -1, -1, 0, -2, -1, -1, -3, -2, -3, -4, -4, -6, -7, -8, -11, -13, -16, -20, -24, -31, -37, -46, -58, -70, -88, -108, -133, -167, -204, -252, -315, -386, -479, -594, -731, -909, -1122, -1386, -1720, -2124, -2628, -3254, -4022, -4980
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2017

Keywords

Crossrefs

Cf. A049346, A143951, A227310, A291148 (similar sequence).

Formula

Convolution inverse of A143951.
a(n) = -A227310(n) for n > 0.

A206737 G.f.: 1/(1 - x/(1 - x^4/(1 - x^7/(1 - x^10/(1 - x^13/(1 - x^16/(1 -...- x^(3*n-2)/(1 -...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 28, 39, 54, 76, 107, 150, 210, 294, 412, 578, 811, 1137, 1593, 2233, 3131, 4390, 6155, 8629, 12097, 16959, 23777, 33336, 46737, 65524, 91863, 128790, 180563, 253149, 354912, 497581, 697602, 978031, 1371190, 1922395
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

We have the simple continued fraction expansions (A(x) is the sequence o.g.f.): A(1/n) = [1; n - 2, 1, n^3 - 2, 1, n^4 - 2, 1, n^6 - 2, 1, n^7 - 2, 1, n^9 - 2, 1, n^10 - 2, 1, ...] for n >= 3 and A(-1/n) = [0; 1, n - 1, 1, n^3 - 1, n^4 - 1, 1, n^6 - 1, n^7 - 1, 1, n^9 - 1, n^10 - 1, 1, ...] for n >= 2. Cf. A005169, A111317 and A143951. - Peter Bala, Dec 15 2015

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + ...
Simple continued fraction expansions: A(1/10) = 1.11112345816325284441923227158 ... = [1, 8, 1, 998, 1, 9998, 1, 999998, 1, 9999998, 1, 999999998, 1, 9999999998, 1, ...]; A(-1/10) = 0.909082643877542661578687284018 ... = [0, 1, 9, 1, 999, 9999, 1, 999999, 9999999, 1, 999999999, 9999999999, 1, ...]. - _Peter Bala_, Dec 15 2015
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0) .. a(N)
    C:= [0,[1,1],seq([-x^i,1],i=1..N,3)]:
    S:= series(numtheory:-cfrac(C),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Dec 28 2015
  • Mathematica
    max = 15; CF = 1+x*O[x]^max; M = Sqrt[max+1]//Floor; For[k=0, k <= M, k++, CF = 1/(1-x^(3M-3k+1)*CF)]; CoefficientList[CF, x] (* Jean-François Alcover, Dec 29 2015, adapted from PARI *)
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(3*Range[nmax + 1]-2)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^(3*M-3*k+1)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))

Formula

a(n) ~ c * d^n, where d = 1.40198938377739909105003523518827... and c = 0.34165269320144328278000954698... - Vaclav Kotesovec, Aug 25 2017
From Peter Bala, Jul 03 2019: (Start)
O.g.f. as a ratio of q-series: N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2+n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))) and D(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2-2*n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))). Cf. A143951, A224704 and A206738.
D(q) has a simple real zero at x = 0.7132721628.... The constants c and d quoted in the above asymptotic approximation for a(n) are given by d = 1/x and c = - N(x)/(x*D'(x)), where the prime indicates differentiation w.r.t. q. (End)

A206738 G.f.: 1/(1 - x^2/(1 - x^5/(1 - x^8/(1 - x^11/(1 - x^14/(1 - x^17/(1 -...- x^(3*n-1)/(1 -...)))))))), a continued fraction.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 9, 11, 14, 18, 22, 29, 35, 46, 56, 73, 90, 116, 144, 184, 231, 292, 370, 465, 591, 742, 942, 1185, 1502, 1893, 2395, 3023, 3819, 4826, 6093, 7702, 9724, 12290, 15519, 19611, 24767, 31294, 39527, 49937, 63082
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

We have the simple continued fraction expansions (A(x) is the sequence o.g.f.): A(1/n) = [1; n^2 - 2, 1, n^3 - 2, 1, n^5 - 2, 1, n^6 - 2, 1, n^8 - 2, 1, n^9 - 2, 1, n^11 - 2, 1, n^12 - 2, 1, ...] for n >= 2 and A(-1/n) = [ 1, n^2 - 1, n^3 - 1, 1, n^5 - 1, n^6 - 1, 1, n^8 - 1, n^9 - 1, 1, n^11 - 1, n^12 - 1, 1, ...] for n >= 2. Cf. A005169, A111317 and A143951. - Peter Bala, Dec 15 2015

Examples

			G.f.: A(x) = 1 + x^2 + x^4 + x^6 + x^7 + x^8 + 2*x^9 + x^10 + 3*x^11 + ...
Simple continued fraction expansions: A(1/2) = 1.34788543155288690684 ... = [1; 2, 1, 6, 1, 30, 1, 62, 1, 254, 1, 510, 1, 2046, 1, 4094, 1, ...] and A(-1/2) = 1.3199498363818812865 ... = [1; 3, 7, 1, 31, 63, 1, 255, 511, 1, 2047, 4095, 1, ...]. - _Peter Bala_, Dec 15 2015
		

Crossrefs

Programs

  • Maple
    N:= 100:
    C:= [0,[1,1],seq([-x^i,1],i=2..N,3)]:
    S:= series(numtheory:-cfrac(C),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 18 2024
  • Mathematica
    nmax = 60; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(3*Range[nmax + 1]-1)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^(3*M-3*k+2)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))

Formula

a(n) ~ c * d^n, where d = 1.26326802855134275222... and c = 0.16506173508242936... - Vaclav Kotesovec, Aug 25 2017
From Peter Bala, Jul 03 2019: (Start)
O.g.f. as a ratio of q series: N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2+2*n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))) and D(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2-n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))). Cf. A143951, A224704 and A206737.
D(q) has a simple real zero at x = 0.79159764784576529644 .... The constants c and d quoted in the above asymptotic approximation are given by d = 1/x and c = - N(x)/(x*D'(x)), where the prime indicates differentiation w.r.t. q. (End)
Showing 1-10 of 13 results. Next