A068712
Primes of the form 5*2^k + 3.
Original entry on oeis.org
13, 23, 43, 83, 163, 643, 1283, 10243, 20483, 1310723, 5242883, 335544323, 1342177283, 21474836483, 85899345923, 43980465111043, 87960930222083, 5629499534213123, 22517998136852483, 1441151880758558723
Offset: 1
1283 is a term as a concatenation of 2^7 and 3.
-
[a: n in [1..100] | IsPrime(a) where a is 5*2^n + 3]; // Vincenzo Librandi, Dec 08 2011
-
Select[5*2^Range[60]+3, PrimeQ] (* Harvey P. Dale, Feb 04 2011 *)
-
for(n=1,150, if(isprime(2^n*5+3)==1,print1(2^n*5+3,",")))
A243429
Primes of the form 2^n + 39.
Original entry on oeis.org
41, 43, 47, 71, 103, 167, 1063, 2087, 8231, 131111, 536870951, 8589934631, 549755813927, 8796093022247, 154742504910672534362390567, 40564819207303340847894502572071, 162259276829213363391578010288167, 2722258935367507707706996859454145691687
Offset: 1
Cf. primes of the form 2^n+k:
A092506 (k=1),
A057733 (k=3),
A123250 (k=5),
A104066 (k=7),
A104070 (k=9),
A156940 (k=11),
A104067 (k=13),
A144487 (k=15),
A156973 (k=17),
A104068 (k=19),
A156983 (k=21),
A176922 (k=23),
A104072 (k=25),
A104071 (k=27),
A156974 (k=29),
A104069 (k=31),
A176926 (k=33),
A176927 (k=35),
A176924 (k=37), this sequence (k=39),
A176925 (k=41),
A243430 (k=43),
A243431 (k=45),
A243432 (k=47),
A104073 (k=49).
-
[a: n in [0..500] | IsPrime(a) where a is 2^n+39];
-
Select[Table[2^n + 39, {n, 0, 500}], PrimeQ]
A144670
Triangle read by rows where T(m,n)=2mn+m+n-7.
Original entry on oeis.org
-3, 0, 5, 3, 10, 17, 6, 15, 24, 33, 9, 20, 31, 42, 53, 12, 25, 38, 51, 64, 77, 15, 30, 45, 60, 75, 90, 105, 18, 35, 52, 69, 86, 103, 120, 137, 21, 40, 59, 78, 97, 116, 135, 154, 173, 24, 45, 66, 87, 108, 129, 150, 171, 192, 213, 27, 50, 73, 96, 119, 142, 165, 188, 211, 234, 257
Offset: 1
Triangle begins:
-3;
0, 5;
3, 10, 17;
6, 15, 24, 33;
9, 20, 31, 42, 53;
12, 25, 38, 51, 64, 77;
15, 30, 45, 60, 75, 90, 105;
18, 35, 52, 69, 86, 103, 120, 137;
21, 40, 59, 78, 97, 116, 135, 154, 173;
24, 45, 66, 87, 108, 129, 150, 171, 192, 213;
= = = = = = = =
-
[2*n*k + n + k -7: k in [1..n], n in [1..12]]; // Vincenzo Librandi, Oct 15 2012
-
t[n_,k_]:=2 n*k+n+k-7; Table[t[n, k], {n, 12}, {k, n}] // Flatten (* Vincenzo Librandi, Oct 15 2012 *)
A211486
Primes of the form 5+3*2^k.
Original entry on oeis.org
11, 17, 29, 53, 101, 197, 389, 773, 49157, 196613, 1572869, 12582917, 50331653, 402653189, 1610612741, 12884901893, 824633720837, 54043195528445957, 432345564227567621, 3458764513820540933, 226673591177742970257413, 59421121885698253195157962757
Offset: 1
Cf.
A057913 (n such that 3*2^n + 5 is prime).
-
[ a: n in [0..250] | IsPrime(a) where a is 5+3*2^n ];
-
Select[5+2^Range[0,2000]*3,PrimeQ]
-
{for(n=0, 80, if(isprime(k=5+3*2^n), print1(k, ", ")))}
A237418
Primes of the form 4^k + 15.
Original entry on oeis.org
19, 31, 79, 271, 1039, 4111, 65551, 4194319, 67108879, 1073741839, 4294967311, 1099511627791, 4398046511119, 70368744177679, 4722366482869645213711, 75557863725914323419151
Offset: 1
65551 is a term because 4^8 + 15 = 65551 is prime.
-
[a: n in [1..70] | IsPrime(a) where a is 4^n+15];
-
Select[Table[4^n + 15, {n, 1, 200}],PrimeQ]
A193109
Least k such that 2^x + k produces primes for x=1..n and composite for x=n+1.
Original entry on oeis.org
0, 1, 9, 3, 225, 15, 65835, 1605, 19425, 2397347205, 153535525935
Offset: 1
-
Table[k = 0; While[i = 1; While[i <= n && PrimeQ[2^i + k], i++]; i <= n || PrimeQ[2^i + k], k++]; k, {n, 9}] (* T. D. Noe, Jul 21 2011 *)
-
is(k, n) = for(x=1, n, if(!isprime(k+2^x), return(0))); 1;
a(n) = {my(s=2); forprime(p=3, n, if(znorder(Mod(2, p))==(p-1), s*=p)); forstep(k=s*(n>1)/2, oo, s, if(is(k, n) && !isprime(k+2^(n+1)), return(k))); } \\ Jinyuan Wang, Jul 30 2020
A295196
Numbers n > 1 such that 2^(n-1) and (2*n-m)*2^(((n-1)/2) - floor(log_2(n))) are congruent to 1 (mod n) for at least one of m = 3, m = 7 and m = 15.
Original entry on oeis.org
7, 23, 31, 47, 71, 79, 263, 271, 1031, 1039, 2063, 4111, 32783, 65543, 65551, 262151, 1048583, 4194319, 8388623, 67108879, 268435463, 1073741831, 1073741839, 4294967311
Offset: 1
-
twoDistableQ[n_] := MemberQ[Mod[(2n - {3, 7, 15}) PowerMod[2, (n - 1)/2 - Floor@ Log2@ n, n], n], 1]; p = 3; twoDistablesList = {}; While[p < 1000000000, If[twoDistableQ@ p, AppendTo[ twoDistablesList, p]]; p = NextPrime@ p]; twoDistablesList (* Robert G. Wilson v, Nov 17 2017 *)
-
a(n) = (n%2) && lift((Mod(2, n)^(n-1))==1) && (lift((Mod((2*n-3), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1)||lift((Mod((2*n-7), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1)||lift((Mod((2*n-15), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1))
-
is(n)=if(Mod(2,n)^(n-1)!=1, return(0)); my(m=Mod(2,n)^(n\2-logint(n,2))); ((2*n-3)*m==1 || (2*n-7)*m==1 || (2*n-15)*m==1) && n>1 \\ Charles R Greathouse IV, Nov 17 2017
Showing 1-7 of 7 results.
Comments