cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A068712 Primes of the form 5*2^k + 3.

Original entry on oeis.org

13, 23, 43, 83, 163, 643, 1283, 10243, 20483, 1310723, 5242883, 335544323, 1342177283, 21474836483, 85899345923, 43980465111043, 87960930222083, 5629499534213123, 22517998136852483, 1441151880758558723
Offset: 1

Views

Author

Amarnath Murthy, Mar 05 2002

Keywords

Examples

			1283 is a term as a concatenation of 2^7 and 3.
		

Crossrefs

Programs

  • Magma
    [a: n in [1..100] | IsPrime(a) where a is 5*2^n + 3]; // Vincenzo Librandi, Dec 08 2011
  • Mathematica
    Select[5*2^Range[60]+3, PrimeQ]  (* Harvey P. Dale, Feb 04 2011 *)
  • PARI
    for(n=1,150, if(isprime(2^n*5+3)==1,print1(2^n*5+3,",")))
    

Extensions

More terms from Benoit Cloitre, Mar 09 2002

A243429 Primes of the form 2^n + 39.

Original entry on oeis.org

41, 43, 47, 71, 103, 167, 1063, 2087, 8231, 131111, 536870951, 8589934631, 549755813927, 8796093022247, 154742504910672534362390567, 40564819207303340847894502572071, 162259276829213363391578010288167, 2722258935367507707706996859454145691687
Offset: 1

Views

Author

Vincenzo Librandi, Jun 05 2014

Keywords

Comments

Associated n: 1, 2, 3, 5, 6, 7, 10, 11, 13, 17, 29, 33, 39, 43, 87, 105, 107, 131, 253, 329, ....

Crossrefs

Cf. primes of the form 2^n+k: A092506 (k=1), A057733 (k=3), A123250 (k=5), A104066 (k=7), A104070 (k=9), A156940 (k=11), A104067 (k=13), A144487 (k=15), A156973 (k=17), A104068 (k=19), A156983 (k=21), A176922 (k=23), A104072 (k=25), A104071 (k=27), A156974 (k=29), A104069 (k=31), A176926 (k=33), A176927 (k=35), A176924 (k=37), this sequence (k=39), A176925 (k=41), A243430 (k=43), A243431 (k=45), A243432 (k=47), A104073 (k=49).

Programs

  • Magma
    [a: n in [0..500] | IsPrime(a) where a is 2^n+39];
  • Mathematica
    Select[Table[2^n + 39, {n, 0, 500}], PrimeQ]

A144670 Triangle read by rows where T(m,n)=2mn+m+n-7.

Original entry on oeis.org

-3, 0, 5, 3, 10, 17, 6, 15, 24, 33, 9, 20, 31, 42, 53, 12, 25, 38, 51, 64, 77, 15, 30, 45, 60, 75, 90, 105, 18, 35, 52, 69, 86, 103, 120, 137, 21, 40, 59, 78, 97, 116, 135, 154, 173, 24, 45, 66, 87, 108, 129, 150, 171, 192, 213, 27, 50, 73, 96, 119, 142, 165, 188, 211, 234, 257
Offset: 1

Views

Author

Vincenzo Librandi, Jan 28 2009

Keywords

Comments

Numbers n such that, if 2^(s-1)=n then [A144487] is not prime.
Let p (prime number), n=(p^2-15)/2 mod(p).

Examples

			Triangle begins:
-3;
0, 5;
3, 10, 17;
6, 15, 24, 33;
9, 20, 31, 42, 53;
12, 25, 38, 51, 64, 77;
15, 30, 45, 60, 75, 90, 105;
18, 35, 52, 69, 86, 103, 120, 137;
21, 40, 59, 78, 97, 116, 135, 154, 173;
24, 45, 66, 87, 108, 129, 150, 171, 192, 213;
= = = = = = = =
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k -7: k in [1..n], n in [1..12]]; // Vincenzo Librandi, Oct 15 2012
  • Mathematica
    t[n_,k_]:=2 n*k+n+k-7; Table[t[n, k], {n, 12}, {k, n}] // Flatten (* Vincenzo Librandi, Oct 15 2012 *)

A211486 Primes of the form 5+3*2^k.

Original entry on oeis.org

11, 17, 29, 53, 101, 197, 389, 773, 49157, 196613, 1572869, 12582917, 50331653, 402653189, 1610612741, 12884901893, 824633720837, 54043195528445957, 432345564227567621, 3458764513820540933, 226673591177742970257413, 59421121885698253195157962757
Offset: 1

Views

Author

Vincenzo Librandi, Apr 13 2012

Keywords

Crossrefs

Cf. A057913 (n such that 3*2^n + 5 is prime).

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 5+3*2^n ];
    
  • Mathematica
    Select[5+2^Range[0,2000]*3,PrimeQ]
  • PARI
    {for(n=0, 80, if(isprime(k=5+3*2^n), print1(k, ", ")))}

A237418 Primes of the form 4^k + 15.

Original entry on oeis.org

19, 31, 79, 271, 1039, 4111, 65551, 4194319, 67108879, 1073741839, 4294967311, 1099511627791, 4398046511119, 70368744177679, 4722366482869645213711, 75557863725914323419151
Offset: 1

Views

Author

Vincenzo Librandi, Feb 22 2014

Keywords

Comments

Subsequence of A144487.

Examples

			65551 is a term because 4^8 + 15 = 65551 is prime.
		

Crossrefs

Cf. A000040, A144487, A253773 (corresponding k's).

Programs

  • Magma
    [a: n in [1..70] | IsPrime(a) where a is 4^n+15];
  • Mathematica
    Select[Table[4^n + 15, {n, 1, 200}],PrimeQ]

Formula

a(n) = 4^A253773(n) + 15. - Elmo R. Oliveira, Nov 28 2023

A193109 Least k such that 2^x + k produces primes for x=1..n and composite for x=n+1.

Original entry on oeis.org

0, 1, 9, 3, 225, 15, 65835, 1605, 19425, 2397347205, 153535525935
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 21 2011

Keywords

Comments

All terms except the first four are congruent to 15 mod 30.
a(10) was found in 2005 by T. D. Noe and a(11) was found in the same year by Don Reble.
Other known values: a(13) = 29503289812425.
a(12) > 10^13. - Tyler Busby, Feb 19 2023

Crossrefs

Another version of A110096.

Programs

  • Mathematica
    Table[k = 0; While[i = 1; While[i <= n && PrimeQ[2^i + k], i++]; i <= n || PrimeQ[2^i + k], k++]; k, {n, 9}] (* T. D. Noe, Jul 21 2011 *)
  • PARI
    is(k, n) = for(x=1, n, if(!isprime(k+2^x), return(0))); 1;
    a(n) = {my(s=2); forprime(p=3, n, if(znorder(Mod(2, p))==(p-1), s*=p)); forstep(k=s*(n>1)/2, oo, s, if(is(k, n) && !isprime(k+2^(n+1)), return(k))); } \\ Jinyuan Wang, Jul 30 2020

A295196 Numbers n > 1 such that 2^(n-1) and (2*n-m)*2^(((n-1)/2) - floor(log_2(n))) are congruent to 1 (mod n) for at least one of m = 3, m = 7 and m = 15.

Original entry on oeis.org

7, 23, 31, 47, 71, 79, 263, 271, 1031, 1039, 2063, 4111, 32783, 65543, 65551, 262151, 1048583, 4194319, 8388623, 67108879, 268435463, 1073741831, 1073741839, 4294967311
Offset: 1

Views

Author

Jonas Kaiser, Nov 16 2017

Keywords

Comments

This definition arises from the conjecture that pseudoprime numbers (A001567) occur only at certain distances m from the next smaller number of the form 2^n. So, if we know that a certain distance does not appear with pseudoprime numbers, we are able to calculate these numbers using Fermat's little theorem and we know that it has to be prime. To "plot" the distance of pseudoprime numbers to 2^n use m = A001567(n) - 2^floor(log_2(A001567(n))). So, the first values of m which do not have a "safe prime number distance" (values with "safe prime number distance" are those values for m which pseudoprime numbers never have) should be m = 1, 49, 81, 85, 129, 133, 273, 275, 289, 321, ....
Conjecture 1: There are no composite numbers in this sequence and perhaps infinitely many primes.
Conjecture 2: For m = 7 this definition generates A104066 and for m = 15 this definition generates A144487 (A057197).
Conjecture 3: There are (infinitely many?) m for which this definition generates nothing but (infinitely many?) primes of the form p = 2^k + m.
It appears that this sequence is a subsequence of A139035.

Crossrefs

Programs

  • Mathematica
    twoDistableQ[n_] := MemberQ[Mod[(2n - {3, 7, 15}) PowerMod[2, (n - 1)/2 - Floor@ Log2@ n, n], n], 1]; p = 3; twoDistablesList = {}; While[p < 1000000000, If[twoDistableQ@ p, AppendTo[ twoDistablesList, p]]; p = NextPrime@ p]; twoDistablesList (* Robert G. Wilson v, Nov 17 2017 *)
  • PARI
    a(n) = (n%2) && lift((Mod(2, n)^(n-1))==1) && (lift((Mod((2*n-3), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1)||lift((Mod((2*n-7), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1)||lift((Mod((2*n-15), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1))
    
  • PARI
    is(n)=if(Mod(2,n)^(n-1)!=1, return(0)); my(m=Mod(2,n)^(n\2-logint(n,2))); ((2*n-3)*m==1 || (2*n-7)*m==1 || (2*n-15)*m==1) && n>1 \\ Charles R Greathouse IV, Nov 17 2017

Extensions

a(17)-a(24) from Charles R Greathouse IV, Nov 17 2017
Showing 1-7 of 7 results.